• 제목/요약/키워드: AC Power Source

Search Result 524, Processing Time 0.023 seconds

A Study on the Utilization of Metal Oxide Varistor for Low-Voltage AC Circuits (저압 AC회로의 MOV 적용방안 연구)

  • Choi, Hyo-Yul;Lee, Won-Bin;Kang, Young-Suk;Lee, Jae-Bok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1822-1824
    • /
    • 1996
  • Damage and upset of control and communication equipment due to transient overvoltages which occur due primarily to internal switching surge and external lightning surge are an important problems in electromagnetic compatibility(EMC). In this paper, we analyzed operation characteristic of metal oxide varistor widely used low voltage AC line using the electromagnetic transients program(EMTP) and compare it with experimental results and also, we modeled combination generator producing $1.2/50{\mu}s$ open circuit voltage and $8/20{\mu}s$ short circuit current as a source which is critical in calculating operation characteristic. Simulation results showed that most of Transient energy consumes at MOV located in service entrance side than load side, and it showed similar to experimental results. Therefore, entrance side MOV should be selected more energy capacity than that of load side MOV.

  • PDF

A High Frequency Link Direct DC-AC Converter for Fuel Cell Power Source (연료전지 발전 시스템용 고주파 링크 DC-AC 컨버터)

  • Song Y.J.;Jung B.M.;Han S.B.;Jeong H.G.;Park S.I.
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.124-126
    • /
    • 2004
  • This paper describes a boost converter cascaded high frequency link direct do-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from fuel cell is proposed. A new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented in detail.

  • PDF

A High-Efficiency Bidirectional AC/DC Topology for V2G Applications

  • Su, Mei;Li, Hua;Sun, Yao;Xiong, Wenjing
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.899-907
    • /
    • 2014
  • This paper proposes a single-phase bidirectional AC/DC converter topology applied in V2G systems, which consists of an inverter and a bidirectional non-inverting buck-boost converter. This topology can operate in four modes: buck charging, boost charging, buck discharging and boost discharging with high input current quality and unity input power factor. The inverter switches at line frequency, which is different from conventional voltage source inverters. A bidirectional buck-boost converter is utilized to adapt to a wider charging voltage range. The modulation and control strategy is introduced in detail, and the switching patterns are optimized to reduce the current ripple. In addition, the semiconductor losses are analyzed. Simulation and experimental results demonstrate the validity and effectiveness of the proposed topology.

A Novel Variable-Speed Renewable-Energy Generation System of Induction Generator and PWM Converter for Small-Scale Hybrid Power Applications

  • Ahmed, Tarek;Nishida, Katsumi;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1339-1342
    • /
    • 2005
  • This paper presents a simple AC-DC power conditioner for a squirell-cage induction generator(IG) operating under variable shaft speeds. The necessary reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM power converter size. A simple control compensating for changes in the electrical loads as well as the variation in speed was developed to regulate the voltages of the IG system by controlling the rotor flux through its reactive and active currents control implementation. This proposed power conditioning scheme can be used efficiently as a wind power generation system where the output voltage of the IG is maintained constant voltage despite the variable frequency and the DC bus voltage of the PWM converter can be used for either DC applications such as battery charging or AC power applications with 60/50 Hz by connecting a stand alone inverter. The experimental and simulated operating performance results of a 5 kW IG scheme at various speeds and leads are presented.

  • PDF

A study of Voltage Regulation Using Voltage Fed Inverter (전압형 인버터를 이용한 전압조정에 관한 연구)

  • Chung, Y.T.;Lee, S.Y.;Lee, H.G.;Lee, D.H.;Kim, G.D.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.393-396
    • /
    • 1990
  • This paper represented constant voltage power source equipment using voltage fed inverter. This system drived syncronizing power source, charged battery connected to DC side, and constantly maintained regardless of power source voltage variation and load variation. Output made good wave with PWM method and we proved stabile constant voltage output when AC power source is failure.

  • PDF

Development of TIG-Welder DC-DC Converter Based on Fuel Cell Stack (연료전지로 구동되는 TIG-용접기용 DC-DC 컨버터 개발)

  • Min, Myung-Sik;Park, Sang-Hoon;Jeon, Byum-Soo;Won, Chung-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the power conversion system for TIG-welder using the fuel cell stack Generally, power supply for TIG-welder uses the front-ended diode bridge rectifier by common AC power source. In this case, power supply of TIG-welder increases in volume because of using bulky capacitor and diode-rectifier. Also, input current includes ripple and harmonics. Moreover, TIG-welder will be demand the power supply with lightweight and easy movement in the areas like as the islands and mountainous areas or the special environment are not use common AC power source. Thus, input power of the power conversion system for TIG-welder is used PEMFC(Polymer Electrolyte Membrane Fuel Cell), and the power conversion system is comprised of full-bridge converter with function of boost converter and inverter welding source, in this paper. The proposed power conversion system which is power supply for TIG-welder was verified by computer simulations and experiments.

The AC Chopper LED Driving System Using The Y Type Balancing Transformer (Y형 밸런싱 트랜스포머를 적용한 AC초퍼 LED 구동 시스템)

  • Kim, Jin-Gu;Yoo, Jin-Wan;Kim, Yong-Ha;Park, Chong-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.22-29
    • /
    • 2015
  • The AC-LED driving system which is connected directly to alternative current source is suitable for commercialization because of it's simple structure and low cost. However, it requires additional circuits compensating for current differences between the parallel connected LED strings. In this paper, we proposed the circuit compensating for current error of the three LED strings using the Y type balancing transformer. The proposed Half-bridge AC Chopper LED driving system used the ferrite material's balancing transformer. at the same time, it is able to dimming control. The proposed system is applied to 80W AC-LED module consist of three parallel strings. Experiment results present that Power factor and THD measured with power analyzer are 0.958 and 26.473% respectively satisfied with IEC61000-3-2 harmonics standard.

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Analysis of partial resonant AC-DC converter for high power and power factor

  • Mun, Sang-Pil;Kim, Si-Lyur;Lee, ki-Youn;Hyun-Woo;Katsunori taniguchi, Katsunori-Taniguchi
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.920-927
    • /
    • 1998
  • This paper proposed that an Analysis of a partial resonant AC-DC converter for high power and power factor operates with four choppers connecting to a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of lose-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used

  • PDF

Selective Harmonic Elimination in Multi-level Inverters with Series-Connected Transformers with Equal Power Ratings

  • Moussa, Mona Fouad;Dessouky, Yasser Gaber
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.464-472
    • /
    • 2016
  • This study applies the selective harmonic elimination (SHE) technique to design and operate a regulated AC/DC/AC power supply suitable for maritime military applications and underground trains. The input is a single 50/60 Hz AC voltage, and the output is a 400 Hz regulated voltage. The switching angles for a multi-level inverter and transformer turns ratio are determined to operate with special connected transformers with equal power ratings and produce an almost sinusoidal current. As a result of its capability of directly controlling harmonics, the SHE technique is applicable to apparatus with congenital immunity to specific harmonics, such as series-connected transformers, which are specially designed to equally share the total load power. In the present work, a single-phase 50/60 Hz input source is rectified via a semi-controlled bridge rectifier to control DC voltage levels and thereby regulate the output load voltage at a constant level. The DC-rectified voltage then supplies six single-phase quazi-square H-bridge inverters, each of which supplies the primary of a single-phase transformer. The secondaries of the six transformers are connected in series. Through off-line calculation, the switching angles of the six inverters and the turns ratios of the six transformers are designed to ensure equal power distribution for the transformers. The SHE technique is also employed to eliminate the higher-order harmonics of the output voltage. A digital implementation is carried out to determine the switching angles. Theoretical results are demonstrated, and a scaled-down experimental 600 VA prototype is built to verify the validity of the proposed system.