• 제목/요약/키워드: AC Motor Speed Control

검색결과 202건 처리시간 0.025초

교류 서보 전동기 속도센서리스 제어를 위한 퍼지 동조 고이득 관측기 설계 (Design of a Fuzzy-Tuning High Gain Observer for Speed-Sensorless Control of an AC Servo Motor)

  • 김상훈;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권12호
    • /
    • pp.705-712
    • /
    • 2005
  • This paper deals with speed-sensorless control of an AC servo motor using Fuzzy-Tuning High Gain Observer(FTHGO). Resolver or encoder can be used to measure a rotor speed, but it has a limit to detect motor speed precisely. To solve this problem, it is studied to measure a speed of an AC servo motor without sensor. In this paper, the gain of an observer to estimate motor speed is properly set up and designed using the fuzzy control theory. It calculates the differentiation of the rotor current of the AC motor and estimates the rotor speed using it. Proposed speed sensorless control is performed using the estimated speed as the control variable. Designed FTHGO is applied to AC servo motor to verify the feasibility of the proposed observer. Feasibility of the FTHGO proposed in this paper is proven comparing the experimental results with/without the speed sensor.

퍼지 제어기를 이용한 영구 자석 교류 전동기의 센서리스 속도 제어 (Sensorless Speed Control of Permanent Magnet AC Motor using Fuzzy Logic Controller)

  • 최성대;고봉운;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.524-527
    • /
    • 2003
  • This paper proposes speed control system using a Fuzzy Logic Controller(FLC) in order to realize the speed control of Permanent Magnet AC Motor with no sensor. FLC based MRAS(Model Reference Adaptive System) estimates the speed of Permanent Magnet AC Motor. Using the estimated speed, speed control is performed. The experiment is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF

DSP를 사용한 AC 서보 모터의 속도 예측 제어 (A speed predictive control of the AC servo motor using DSP processor)

  • 김진환
    • 전자공학회논문지S
    • /
    • 제35S권7호
    • /
    • pp.22-28
    • /
    • 1998
  • This paper includes AC servo motor speed control usig the predictive control strategy. Generally, AC servo motor control should have the fast response characteristics. For the issue, sliding mode control and PID control have been applied. However, the former has the speed ripple response due to the chattering and the latter requires the many trial efforts. Originally, the predictive control which has been used in process control area does not need the priori knowledge for the application system and it is easy to compute the optimal gain with the prediction. In this paper, the TMS320C31 DSP pocessor is used for AC motor control with fst dynamics and the tuning guid-line for the parameters of the predictive control algorithm is given in order to reduce the computation load. Also, the actuator saturationis implemented uisngthe QP(Quadratic Programming) method and the transient response is improved by the identified intertia coefficient when AC motor is drived at forward/reverse rotation.

  • PDF

유도전동기 속도검출을 위한 최적 제어시스템에 관한 연구 (A Study on the Optimum Control System for AC Motor Speed Detection)

  • 이강연;이진섭;조금배;이상일;백형래
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.182-187
    • /
    • 1997
  • In this paper, a instantaneous speed measurement method using a three phase sinusoidal encoder is described and it's simulations are developed. The proposed method can easily detect the AC motor speed by using that the encoder is propotion to the AC motor speed. The performance of proposed method is confirmed by computer simulation and experiment results. The high accuracy of the optimum control system, AC motor speed detection is designed and proposed.

  • PDF

Speed Sensorless Vector Control for AC servo Motor Using Flux observer

  • Hong, Jeng-pyo;Kwon, Soon-Jae;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.185-191
    • /
    • 2004
  • This study describes the scheme of vector drive system without speed sensor for AC servo motor using theory of a flux observer and based on the field oriented vector control. The new method of speed estimation is presented from operate with the position and magnitude of the secondary flux which obtain from the voltage reference and detected current. As the estimated speed is settled by the flux and the machine-specific parameters. this method don't need to adjust the gain of the parameter. Based on the derived theory for vector control. the scheme for sensorless vector drive of AC servo motor is designed and realized. And the experiment verifies it passable to realize the sensorless vector drive based on a field-oriented type.

적응 퍼지-슬라이딩 관측기를 이용한 교류 서보 전동기 속도제어 (Speed Control of AC Servo Motor Using Adaptive Fuzzy-Sliding Observer)

  • 김상훈;윤광호;고봉운;김원태;김기남;남문현;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.726-728
    • /
    • 2004
  • In this paper, the gain of the observer is properly set up using the fuzzy control and Fuzzy-Sliding observer(FSQ) that have a superior transient characteristic and is easy to implement compared to the existing method is designed. It estimate the differentiation of the armature current directly using the armature current measured in the AC motor. It estimate the speed of the rotor using the differentiation. It is proposed speed sensorless control method using the estimated speed. Optimal gain of speed observer(Luenberger observer) was set up using the fuzzy control and adapted speed control of AC servo motor. To verify the performance of designed Fuzzy-Sliding observer, simulation compared with fixed speed observer gain of G.B Wang and S.S Peng's sliding observer is performed. Also, it was proved the excellence and feasibility of the proposed observer from the comparison test with a speed sensor and without a speed sensor which used a highly efficient drive and 400W AC servo motor starting system.

  • PDF

외란 관측자와 가변구조제어기를 이용한 AC 서보모터의 속도 및 위치 제어 (Speed and position control of the AC motor using variable structure controller with disturbance observer)

  • 은용순;김광수;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.652-655
    • /
    • 1996
  • This paper develops an AC motor controller for applications. The AC motor controller is designed based on the variable structure control method and a variable structure disturbance observer is added to reduce the effects of exogenous disturbances. The designed controller is installed on the z-axis of a CNC machining center and milling experiments were performed. The results show improved performance on both position and speed tracking, when compared to the factory-designed servo controller.

  • PDF

신경회로망을 이용한 평면 좌표계형 로봇구동용 교류서보전동기 제어기 (AC Servo Motor Controller for Driving Cartesian Coordinate Type Robot Using Neural Networks)

  • 김평호;서진연;김대곤;이강연;백형래
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.14-17
    • /
    • 1999
  • This paper describes the controller for the improving speed control the AC servo motor. The microprocessor provides an output to the difference in command. The servo system improves the characteristics of speed control. When the motor is running at the same speed as set by the reference signal, the speed encoder also provides a signal the same frequency. Thus, the microprocessor controlled digital techniques enable to realize the flexible performance and control which was possible with time constant. We can know that PI control using neural networks by 80196 can control efficiently speed of AC Servo motor. Finally experimental results prove excellent performance of this control system. The system can be adaptable to CNC machine.

  • PDF

전기자동차 용 전동식 컴프레서를 위한 스위치드 릴럭턴스 모터의 센서리스 제어 (Sensorless control of Switched Reluctance Motor for Electric AC Compressors of Electrical Vehicles)

  • 전용희;김재혁
    • 조명전기설비학회논문지
    • /
    • 제28권10호
    • /
    • pp.37-42
    • /
    • 2014
  • This paper discusses study of sensorless control of a variable speed switched reluctance motor (SRM) for electric AC compressors on electrical vehicles. A typical SRM drive requires a position sensor such as an encoder or hall sensor to measure the angular rotor position. However, harsh environment in electrical AC compressors for electric vehicles makes it difficult to use the position sensor in their motor drive system. Therefore, a sensorless control scheme for electric compressor motors utilizing magnetic characteristics of SRM with respect to position angle and phase current is proposed. The overall variable speed SRM drive with position sensorless control scheme has been modeled using Matlab/Simulink software and closed loop current control simulation is presented to validate the proposed sensorless drive control.

Design of Adaptive Fuzzy Logic Controller for Speed Control of AC Servo Motor

  • Nam Jing-Rak;Kim Min-Chan;Ahn Ho-Kyun;Kwak Gun-Pyong;Chung Chin-Young
    • Journal of information and communication convergence engineering
    • /
    • 제3권1호
    • /
    • pp.43-48
    • /
    • 2005
  • In this paper, the adaptive fuzzy logic controller(AFLC) is proposed, which uses real-coding genetic algorithm showing a good performance on convergence velocity and diversity of population among evolutionary computations. The effectiveness of the proposed AFLC was demonstrated by computer simulation for speed control system of AC servo motor. As a result of simulation for the AC servo motor, it is shown the proposed AFLC has the better performance on overshoot, settling time and rising time than the PI controller which is used when tuning AFLC.