• Title/Summary/Keyword: AC Current

Search Result 2,316, Processing Time 0.027 seconds

New Backstepping-DSOGI hybrid control applied to a Smart-Grid Photovoltaic System

  • Nebili, Salim;Benabdallah, Ibrahim;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • In order to overcome the power fluctuation issues in photovoltaic (PV) smart grid-connected systems and the inverter nonlinearity model problem, an adaptive backstepping command-filter and a double second order generalized Integrators (DSOGI) controller are designed in order to tune the AC current and the DC-link voltage from the DC side. Firstly, we propose to present the filter mathematical model throughout the PV system, at that juncture the backstepping control law is applied in order to control it, Moreover the command filter is bounded to the controller aiming to exclude the backstepping controller differential increase. Additionally, The adaptive law uses Lyapunov stability criterion. Its task is to estimate the uncertain parameters in the smart grid-connected inverter. A DSOGI is added to stabilize the grid currents and eliminate undesirable harmonics meanwhile feeding maximum power generated from PV to the point of common coupling (PCC). Then, guaranteeing a dynamic effective response even under very unbalanced loads and/or intermittent climate changes. Finally, the simulation results will be established using MATLAB/SIMULINK proving that the presented approach can control surely the smart grid-connected system.

Impedance-Based Characterization of 2-Dimenisonal Conduction Transports in the LaAlO3/SrxCa1-xTiO3/SrTiO3 systems

  • Choi, Yoo-Jin;Park, Da-Hee;Kim, Eui-Hyun;Park, Chan-Rok;Kwon, Kyeong-Woo;Moon, Seon-Young;Baek, Seung-Hyub;Kim, Jin-Sang;Hwang, Jinha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.171.2-171.2
    • /
    • 2016
  • The 2-dimensiona electron gas (2DEG) layers have opened tremendous interests in the heterooxide interfaces formed between two insulating materials, especially between LaAlO3 and $SrTiO_3$. The 2DEG layers exhibit extremely high mobility and carrier concentrations along with metallic transport phenomena unlike the constituent oxide materials, i.e., $LaAlO_3$ and $SrTiO_3$. The current work inserted artificially the interfacial layer, $Sr_xCa_{1-x}TiO_3$ between $LaAlO_3$ and $SrTiO_3$, with the aim to controlling the 2-dimensional transports. The insertion of the additional materials affect significantly their corresponding electrical transports. Such features have been probed using DC and AC-based characterizations. In particular, impedance spectroscopy was employed as an AC-based characterization tool. Frequency-dependent impedance spectroscopy have been widely applied to a number of electroceramic materials, such as varistors, MLCCs, solid electrolytes, etc. Impedance spectroscopy provides powerful information on the materials system: i) the simultaneous measurement of conductivity and dielectric constants, ii) systematic identification of electrical origins among bulk-, grain boundary-, and electrode-based responses, and iii) the numerical estimation on the uniformity of the electrical origins. Impedance spectroscopy was applied to the $LaAlO_3/Sr_xCa_{1-x}TiO_3/SrTiO_3$ system, in order to understand the 2-dimensional transports in terms of the interfacial design concepts. The 2-dimensional conduction behavior system is analyzed with special emphasis on the underlying mechanisms. Such approach is discussed towards rational optimization of the 2-dimensional nanoelectronic devices.

  • PDF

Histone H3 Lysine Methylation in Adipogenesis (Adipogenesis에서 히스톤 H3 lysine methylation)

  • Jang, Younghoon
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.713-721
    • /
    • 2020
  • Adipogenesis as a model system is needed to understand the molecular mechanisms of human adipocyte biology and the pathogenesis of obesity, diabetes, and other metabolic syndromes. Many relevant studies have been conducted with a focus on gene expression regulation and intracellular signaling relating to Peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are master adipogenic transcription factors. However, epigenome regulation of adipogenesis by epigenomic modifiers or histone mutations is not fully understood. Histone methylation is one of the major epigenetic modifications on gene expression in mammals, and histone H3 lysine methylation (H3Kme) in particular implicates cell differentiation during various tissue and organ development. During adipogenesis, cell type-specific enhancers are marked by histone H3K4me1 with the active enhancer mark H3K27ac. Mixed-lineage leukemia 4 (MLL4) is a major H3K4 mono-methyltransferase on the adipogenic enhancers of PPARγ and C/EBPα loci. Thus, MLL4 is an important epigenomic modifier for adipogenesis. The repressive mark H3K27me3 is mediated by the enzymatic subunit Enhancer zeste homolog 2 (EZH2) of the polycomb repressive complex 2. EZH2-mediated H3K27 tri-methylation on the Wnt gene increases adipogenesis because WNT signaling is a negative regulator of adipogenesis. This review summarizes current knowledge about the epigenomic regulation of adipogenesis by histone H3 lysine methylation which fundamentally regulates gene expression.

Corrosion Characteristics of TiN/Ti Multilayer Coated Ti-30Ta-xZr Alloy for Biomaterials (TiN/Ti 다층막 코팅된 생체용 Ti-30Ta-xZr 합금의 부식특성)

  • Kim, Y.U.;Cho, J.Y.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.162-169
    • /
    • 2009
  • Pure titanium and its alloys are drastically used in implant materials due to their excellent mechanical properties, high corrosion resistance and good biocompatibility. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus than cortical bone. Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. For this reason, Ti-30Ta-xZr alloy systems have been studied in this study. The Ti-30Ta containing Zr(5, 10 and 15 wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24 hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and Ti coating and then coated with TiN, respectively, by using DC magnetron sputtering method. The analyses of coated surface were carried out by field emission scanning electron microscope(FE-SEM). The electrochemical characteristics were examined using potentiodynamic (- 1500 mV~+ 2000 mV) and AC impedance spectroscopy(100 kHz~10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The equiaxed structure was changed to needle-like structure with increasing Zr content. The surface defects and structures were covered with TiN/Ti coated layer. From the polarization behavior in 0.9% NaCl solution, The corrosion current density of Ti-30Ta-xZr alloys decreased as Zr content increased, whereas, the corrosion potential of Ti-30Ta-xZr alloys increased as Zr content increased. The corrosion resistance of TiN/Ti-coated Ti-30Ta-xZr alloys were higher than that of the TiN-coated Ti-30Ta-xZr alloys. From the AC impedance in 0.9% NaCl solution, polarization resistance($R_p$) value of TiN/Ti coated Ti-30Ta-xZr alloys showed higher than that of TiN-coated Ti-30Ta-xZr alloys.

The Establishment of an Activity-Based EVM - PMIS Integration Model (액티비티 기반의 EVM - PMIS 통합모델 구축)

  • Na, Kwang-Tae;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.199-212
    • /
    • 2010
  • To establish an infrastructure for technology and information in the domestic construction industry, several construction regulations pertaining to construction information have been institutionalized. However, there are major problems with the domestic information classification system, earned value management (EVM) and project management information system (PMIS). In particular, the functions of the current PMIS have consisted of a builder-oriented system, and as EVM is not applied to PMIS, the functions of reporting, analysis and forecast for owners are lacking. Moreover, owners cannot confirm information on construction schedule and cost in real time due to the differences between the EVM and PMIS operation systems. The purpose of this study is to provide a framework that is capable of operating PMIS efficiently under an e-business environment, by providing a proposal on how to establish a work breakdown structure (WBS) and an EVM - PMIS integration model, so that PMIS may provide the function of EVM, and stakeholders may have all information in common. At the core of EVM - PMIS integration is the idea that EVM and PMIS have the same operation system, in order to be an activity-based system. The principle of the integration is data integration, in which the information field of an activity is connected with the field of a relational database table consisting of sub-modules for the schedule and cost management function of PMIS using a relational database management system. Therefore, the planned value (PV), cost value (CV), actual cost (AC), schedule variance (SV), schedule performance index (SPI), cost variance (CV) and cost performance index (CPI) of an activity are connected with the field of the relational database table for the schedule and cost sub-modules of PMIS.

The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH (NaOH 화학적 활성화로 제조된 하이브리드 커패시터의 전기화학적 특성)

  • Choi, Jeong Eun;Bae, Ga Yeong;Yang, Jeong Min;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.308-312
    • /
    • 2013
  • Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481 $m^2/g$) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using $LiMn_2O_4$, $LiCoO_2$ as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, $TEABF_4$) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using $LiMn_2O_4$/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

Development of Digital Solder Station Based on PID Controller (PID 제어기를 이용한 전기인두기의 온도 제어 시스템 개발)

  • Oh, Kab-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.866-872
    • /
    • 2010
  • In this paper, we developed a digital soldering station based on PID controller, which supply stable power by controlling the current of heater of soldering iron. The proposed system designed PID controller to converge quickly to the set up temperature by user, and regain the lost of heat by external factors quickly. PID controller, designed by Ziegler-Nichols' tuning method, decides triac's trigger timing using setting temperature and present temperature to control the phase of AC 24V power that supply to the heater. Also, we give the function that shows present temperature and setting temperature of iron, and working time by graphic LCD. And during the rest time, we decided the power saving and extension of iron tip by dropping to the optimal temperature. Two experiments had implemented in $25^{\circ}C$ laboratory to confirm the performance of proposed method. The first experiment took 12sec, 13sec, 16sec, 18sec, reaching to $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$, $480^{\circ}C$ respectively which result showed shorten of rising time than previous method. In the loading experiment of $300^{\circ}C$, $400^{\circ}C$, $480^{\circ}C$ steady state showed temperature drop of $3.8^{\circ}C$, $4.1^{\circ}C$, $4.5^{\circ}C$ which result showed the low temperature deviation than previous method.

Phytophthora Blight of Pepper and Genetic Control of the Disease (고추 역병과 그 유전적 방제)

  • Kim, Byung-Soo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.111-117
    • /
    • 2014
  • Phytophthora blight caused by Phytophthora capsici Leonian is a dangerous disease threatening pepper growers worldwide. The efficacy of chemical control is generally low as the pathogen is soil-borne and rapidly spread by zoospores during the rainy season. Thus, based on the demand for resistant varieties, various good resistant sources, such as CM334, AC2258, and PI201234, have been reported and their inheritance of resistance studied by many different authorities. However, the mode of inheritance remains unclear, as 1 or 2 independent dominant genes, 3 genes, or multiple genes have all been reported as responsible for resistance. Recently, QTL mappings of the gene factors for resistance have been reported, and molecular markers for resistance used in breeding programs. With the release of many resistant commercial hybrid cultivars, differentiation of pathotypes of the pathogen is attracting interest among breeders and plant pathologists. Various authorities have already classified the pathogen strains into different races according to the inter-action between resistant host plants, including the source of resistance, such as CM334 and PI201234, and resistant commercial varieties and P. capsici isolates. However, no standard differential host sets have yet been established, so the results are good only for the pathogen strains used in the experiments. Thus, for breeding varieties with durable resist-ance, it is important to introduce resistance from different sources and use diverse local pathogen strains collected in the target area for distribution in a breeding program.

Design of Low Cost Controller for 5[kVA] 3-Phase Active Power Filter (5[kVA]급 3상 능동전력필터를 위한 저가형 제어기 설계)

  • 이승요;채영민;최해룡;신우석;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.26-34
    • /
    • 1999
  • According to increase of nonlinear power electronics equipment, active power filters have been researched and developed for many years to compensate harmonic disturbances and reactive power. However the commercial of active power filter is being proceeded slowly, because the cost of active power filter compared to the passive filter for harmonic and reactive power compensation is expensive. Especially, the use of DSP (Digital Signal Processing) chip, which is frequently used to control 3-phase active power filter, is a factor of increasing the cost of active power filters. On the other hand, the use of only analog controller makes the controller's circuits much more complicate and depreciates the flexibilities of controller. In this paper, a controller with low cost for 5[kVA] 3-phase active power filter system is designed. To reduce the expense of active filter system, the presented controller is composed of digital control part using Intel 80C196KC $\mu$P and analog control part using hysteresis controller for current control. Characteristic analysis of designed controller for active filter system is performed by computer simulation and compensating characteristics of the designed controller are verified by experiment.tegy can apply to the vector control, leading to better output torque capability in the ac motor drive system. This strategy is that in the overmodulation range, the d-axis output current is given a priority to regulate the flux well, instead the q-axis output curent is sacrificed. Therefore, the vector control even in the overmodulation PWM operation can be achieved well. For this purpose, the d-axis output voltage of a current controller to control the flux is conserved. the q-axis output voltage to control the torque is controlled to place the reference voltage vector on the hexagon boundary in case of the overmodulation. The validity of the proposed overall scheme is confirmed by simulation and experiments for a 22[kW] induction motor drive system.

PWM-PFC Step-Up Converter For Novel Loss-Less Snubber (새로운 무손실 스너버에 의한 PWM-PFC 스텝-업 컨버터)

  • Kwak Dong-Kurl;Lee Bong-Seob;Jung Do-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.1 s.307
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, authors propose a step-up converter of pulse width modulation (PWM) and power factor correction (PFC) by using a novel loss-less snubber. The proposed converter for a discontinuous conduction mode (DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Thereupon, the input power factor is nearly unity and the control method is simple. In the general DCM converters, the switching devices are fumed-on with the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve a soft switching (ZCS and ZVS) of the switching turn-off, the proposed converter is constructed by using a new loss-less snubber which is operated with a partial resonant circuit. The result is that the switching loss is very low and the efficiency of converter is high. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.