• Title/Summary/Keyword: AC 전기습윤

Search Result 6, Processing Time 0.01 seconds

Flow inside the Droplet in AC Electrowetting (AC 전기습윤에서 액적 내부의 유동)

  • Ko, Sung-Hee;Kang, Kwan-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2995-2996
    • /
    • 2007
  • We found that there exists a flow inside a droplet in AC electrowetting, which is distinct from DC electrowetting. In order to investigate the origin of the flow inside the droplet, we performed an experiment and numerical simulation. It is conjecture, based on the results of the experiment and numerical simulation, the flow is caused by the so called induced-charge electroosmosis at high frequencies, and by droplet oscillation at low frequencies.

  • PDF

Jumping of a Droplet on a Superhydrophobic Surface in AC Electrowetting (AC 전기습윤을 이용한 초발수 표면에서의 액적의 점프)

  • Lee, Seung-Jun;Oh, Jung-Min;Kang, Kwan-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2501-2504
    • /
    • 2008
  • We found that a droplet placed on a superhydrophobic surface jumps upward when we controlled the electrical wetting tension appropriately by applying AC voltage. We investigated how the surface deformation and jumping phenomenon of a droplet are affected by applied frequency under constant voltage. We found that a droplet jumps up continuously at a resonance frequency.

  • PDF

Mechanism of Electrohydrodynamic Flow in AC Electrowetting (AC 전기습윤 중 전기수력학 유동의 메카니즘)

  • Lee, Ho-Rim;Ko, Sung-Hee;Yun, Sung-Chan;Kang, Kwan-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2648-2651
    • /
    • 2008
  • In AC electrowetting, it has been reported that there is a flow inside droplets. The flow characteristics such as flow rate, direction and the pattern of streamline are altered according to the frequency range of applied voltage. However, the mechanism of the flow has not been explained yet. This work is concentrated on investigation of the flow mechanism when high-frequency voltage is applied to droplets. We propose that this phenomenon arises from the electro-thermal flow. A numerical analysis is performed for the needle-electrode-plane geometry in which the Coulombic force term is included in the Navier-Stokes equation. According to our analysis, electrical charge is generated due to conductivity gradient which is originated from the nonuniform Joule heating of fluid medium. The result of the analysis is compared with experimental result.

  • PDF

Electrowetting of a droplet under an AC Electric Fields (교류전압 하에서의 액적의 전기습윤현상)

  • Hong, Jin-Seok;Ko, Sung-Hee;Kang, Kwan-Hyung;Kang, In-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.175-176
    • /
    • 2006
  • Electrowetting is prevailing for its various applicability on lap-on-a-chip, and MEMS devices, such as a pump, lens, micro-actuator in the micro-TAS technology. In the usual electrowetting, an AC power is preferred to DC practically. The AC electric field delays the contact angle-saturation, decreases the hysterisis, and is more stable in the view point of dielectric strength. But researches for AC electric field on electrowetting have not been reported very much yet. The different effect of AC on the electrowetting system, especially the effect of a frequency needs to be understood more concretely. In this work, the usual system for electrowetting, water droplet on the dielectric coated electrode (EWOD) is analyzed. Experimental study on the response of contact angles on input frequencies is performed. The simple circuit-model for EWOD system is considered to explain the experimental results. For more concrete understanding, the system is analyzed numerically, where simple AC-conduction model is used. Wetting tensions are analyzed under various input frequency to excavate the experimental results for the responses of the system on input frequencies.

  • PDF

Effect of Suspension in AC Electrowetting (교류 전기습윤에서 부유물의 영향)

  • Ko, Sung-Hee;Oh, Jung-Min;Kang, Hwan-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.379-382
    • /
    • 2006
  • We are investigating the effect of particle on electrowetting, and this paper reports the experimental results obtained until now. The experiment was performed for different particle sizes, electrolyte concentration, and AC frequencies. The problem is quite complicated by various factors, such as the existence of surfactant in suspension and sedimentation of particles. We could not draw a concrete conclusion on the effect of particles, and it needs further investigations. We also report interesting phenomena observed during the experiment. It includes the droplet generation at the edge of a droplet, pseudo-bistability of electrowetting, flow generation inside a droplet, and the chain formation of particles inside a droplet.

  • PDF