• Title/Summary/Keyword: AC/DC conversion

Search Result 244, Processing Time 0.027 seconds

Studies on the energy efficiency of lighting system using LED (LED를 사용한 조명시스템의 에너지효율에 관한 연구)

  • Lee, Yeon Soek;Choi, Sang-Ui;Lee, Min-Guk;Park, Geon-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.971-974
    • /
    • 2014
  • Reflect the social concerns of recent energy saving in this paper. The LED market is continuing to grow continuously. But it is now high light energy conversion led lights., We propose converting the light energy-saving method for these LED lights. Generated the cumulative loss of the conversion done at each light change from the current power of the LED lights. The cumulative loss to achieve minimal energy loss resulting from the improved performance.

  • PDF

Unified MPPT Control Strategy for Z-Source Inverter Based Photovoltaic Power Conversion Systems

  • Thangaprakash, Sengodan
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.172-180
    • /
    • 2012
  • Z-source inverters (ZSI) are used to realize both DC voltage boost and DC-AC inversion in single stage with a reduced number of power switching devices. A traditional MPPT control algorithm provides a shoot-through interval which should be inserted in the switching waveforms of the inverter to output the maximum power to the Z-network. At this instant, the voltage across the Z-source capacitor is equal to the output voltage of a PV array at the maximum power point (MPP). The control of the Z-source capacitor voltage beyond the MPP voltage of a PV array is not facilitated in traditional MPPT algorithms. This paper presents a unified MPPT control algorithm to simultaneously achieve MPPT as well as Z-source capacitor voltage control. Development and implementation of the proposed algorithm and a comparison with traditional results are discussed. The effectiveness of the proposed unified MPPT control strategy is implemented in Matlab/Simulink software and verified by experimental results.

12 Phase Multiple GTO Inverter (12상 다중 GTO 인버터)

  • Oh, Dong-Sub;Lee, Kyu-Jong;Seong, Se-Jin;Choi, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.291-294
    • /
    • 1990
  • Fuel cell system needs DC-AC conversion inverter system because its output is DC. And the inverter system can be operated not only in stand-alone load but also in interactive mode in interactive mode, it is necessary to control active-reactive power of inverter and to synchronize inverter output voltage to power line voltage. In this paper, a 12 phase multiple VSI type GTO inverter system for fuel cell is described. Synchronization between power line voltage phase and inverter output voltage phase, and reduction of harmonics in the output voltage phase are the purpose of this inverter system. This control algorithm for the system is realized by the software method utilizing 8031AH 8bit Microprocessor.

  • PDF

Evaluation of Ride Vibration of Agricultural Tractors(II) - Development of a Measurement and Analysis System of Ride Vibrations - (농용 트랙터의 승차(乘車) 진동(振動) 평가에 관한 연구(II) - 승차 진동 측정 및 분석 시스템의 개발 -)

  • Chung, S.S.;Moon, G.S.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.326-335
    • /
    • 1992
  • This study was carried out to develop a measurement and analysis system of ride vibrations of tractors. The system consists of a portable digital computer, a PCL-812 PG interface card for A/D conversion, two accelerometers, two signal conditioners, a DC-AC power inverter and a DC power supplier. The computer programs installed in the system for data acquisition and analysis were also developed. It was intended that the system should be cheap enough to be afforded by college laboratories but reliable in its functions of measurement and analysis. Characteristics of the components and methods used in the system development were discussed.

  • PDF

Study on Controller Design of AC Servo Permanent Magnet Synchronous Motor by Matrix Converter : Speed Controller (매트릭스 컨버터에 의한 AC 서보 영구자석형 동기전동기의 제어기 설계에 대한 고찰 : 속도제어기)

  • Jeong, Chung-Il;Lee, Sang-Cheol;Mo, Dong-Yeong;Choi, Chang-Young;Kim, Tae-Woong;Park, Gwi-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.106-108
    • /
    • 2008
  • This paper deals with the design for speed controller to drive PMSM by matrix converter without DC-link circuit as the power conversion system of AC servo motor drive. To design the speed controller of PMSM drive, the closed-loop transfer function of speed controller is calculated and then the frequency-domain response characteristics are analyzed by bode plot using Matlab. Based on the results by bode plot, the speed control gains are determined. As the real effects of controller designed in the frequency-domain display in the time-domain, the performance of speed controller is confirmed by the step response of speed controller. The design examples are shown and its validity of the design method mentioned in the paper is verified through PSIM simulation.

  • PDF

A Study on Development of High Efficiency SMPS used in LED (LED용 고효율 SMPS 개발에 관한 연구)

  • Kwak, Dong-Kurl;Lee, Bong-Seob;choi, Shin-Hyeong;Park, Young-Jic
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.431-432
    • /
    • 2014
  • Recently, the demand of LED(light-emitting diode) lighting is gradually enlarged by governmental saveenergy policy, which the LED lighting has been established compulsorily in new buildings, public institutions, and residential installations etc.. The LED lighting is driven by SMPS (switching mode power supply). The SMPS requires high efficiency because the SMPS changes a commercial ac power source to low voltage dc power source. Harmonic components that occur in the conversion process of SMPS decrease system power factor and deal great damage in electric power system. To improve such problems, this paper proposes a SMPS of high efficiency. The switching devices in the proposed SMPS are operated by soft switching technique using a new quasi-resonant circuit. The input ac current waveform in the proposed SMPS becomes a quasi-sinusoidal waveform proportional to the magnitude of input ac voltage under constant switching frequency. As a result, the proposed SMPS obtains low switching power loss and high efficiency, and its input power factor is nearly in unity.

  • PDF

Detailed Design of Power Conversion Device Hardware for Realization of Fuel Cell Power Generation System (연료전지 발전시스템 구현을 위한 전력변환장치 하드웨어 세부설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.135-140
    • /
    • 2022
  • In addition to the stack that directly generates electricity by the reaction of hydrogen and oxygen, the fuel cell power generation system has a reformer that generates hydrogen from various fuels such as methanol and natural gas. It also consists of a power converter that converts the DC voltage generated in the stack into a stable AC voltage. The fuel cell output of such a system is direct current, and in order to be used at home, an inverter device that converts it into alternating current through a power converter is required. In addition, a DC-DC step-up converter is used to boost the fuel cell voltage to about 30~70V, which is the inverter operating voltage, to about 380V. The DC-DC step-up converter is a DC voltage variable device that exists between the fuel cell output and the inverter. Accordingly, since a constant output voltage of the converter is generated in response to a change in the output voltage of the fuel cell, the inverter can receive constant power regardless of the voltage change of the fuel cell. Therefore, in this paper, we discuss the detailed hardware design of the full-bridge converter, which is the main power source of the inverter that receives the fuel cell output voltage (30~70V) as an input and is applied to the grid among the members of the fuel cell power generation system.

A Protection Circuit for the Power Supply of a Gas Discharge Lamp

  • Kim, Ho-Sung;Kim, Jong-Hyun;Baek, Ju-Won;Yoo, Dong-Wook;Jung, Hye-Man;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.777-783
    • /
    • 2010
  • In order to drive gas discharge lamps, DC-AC converters with a LCC resonant tank, whose output voltage is adjusted by a variable frequency control are frequently used. However, when they are activated by varying the operating frequency, converters are frequently damaged by unstable operation, due to the rising and falling of the operating frequency near the resonant frequency. To solve this problem, a simple protection circuit for the power supply of a gas discharge lamp is proposed in this paper. This circuit senses the primary current of the main transformer. Using this protection circuit, the operating frequency of the lamp driving inverter system is kept close to and on the right side of the resonant frequency and the inverter is always operated in the ZVS condition. The resulting stable variable frequency operation allows various gas discharge lamps to be tested without the risk of damaging the main switches, because the protection circuit can protect the power MOSFETs of bridge converters from abnormal conditions. The validity and effectiveness of the proposed protection circuit are verified through the experimental results.

Induction Generator Using PWM Converter and Its Small-Scale Power Applications to Variable-Speed Renewable-Energy Generation

  • Ahmed Tarek;Nishida Katsumi;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2005
  • This paper describes a simple control structure and power conditioning system for an indirect vector controlled stand-alone induction generator (IG) used to operate under variable speed. The required reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM converter size. The vector control structure for the variable speed IG power conditioning system compensates for changes in the electrical three-phase and DC loads while considering the magnetizing curve of the IG. The vector control structure is developed to regulate the DC link voltage of the PWM converter and the IG output voltage. The experimental and simulated performance results of the IG power conditioning system at various speeds and loads are given and show that this proposed scheme can be used efficiently for a variable speed, wind energy conversion system.

Double Two Switch Forward Transformer-Linked Soft-Switching PWM DC-DC Power Converter with Tapped Inductor Filters

  • Moisseev Serguei;Koudriavtsev Oleg;Hiraki Eiji;Nakamura Mantaro;Nakaoka Mutsuo;Hamada Satoshi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a novel circuit topology of the double two-switch forward type high frequency transformer linked soft-switching PWM DC-DC power converter with tapped inductor filters that can operate under a condition of the low peak voltage stress across the power semiconductor devices and lowered peak current stress through the transformer for some high power applications. This circuit topology of an interleaved two-switch forward soft-switching power converter is proposed in the order to minimize an idle circulating current due to the tapped inductor filter without of any additional active auxiliary resonant-assisted snubber circuits, such as active resonant DC link snubbers and AC link snubbers, active resonant commutation leg link snubbers. The unique advantages of this power converter are less power circuit components and power semiconductor devices, constant frequency PWM scheme, cost effective configuration and wider soft-switching PWM operation range under PWM power regulations load variations. The practical effectiveness of the proposed soft-switching converter circuit topology is tested by simulations and is proved by experimental results received from the 500W-100kHz breadboard setup.

  • PDF