• Title/Summary/Keyword: AC/DC

Search Result 2,341, Processing Time 0.024 seconds

The Study of Steady-State Interaction Between AC and DC Lines on the Same Transmission Tower (AC 및 DC 송전 선로 병렬 연계에 따른 정상상태 커플링 영향 분석)

  • Yoon, Jong-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1221-1225
    • /
    • 2010
  • The application of the AC and DC lines on the same transmission tower is an economical and practical approaching that increase the power transmission capacity of an existing transmission corridor. But, In this case, Inductive and capacitive coupling between AC and DC lines on the same tower should be investigated in advance. According to the installation plan of 80kV ${\pm}$60MW bipole HVDC in Cheju, KOREA that will be commissioned until 2011, DC lines will parallely operate with 154kV 2 AC lines in existed 154kV AC 4 lines transmission tower. This paper presents the steady state analysis results about the interaction between 154kV AC and 80kV DC lines in the same transmission tower.

The Study of Transient Coupling between AC and DC lines on the Same Transmission Tower (AC 및 DC 송전선로 과도상태 커플링 영향 분석)

  • Yoon, Jong-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.14-19
    • /
    • 2011
  • The implemetation of the AC and DC lines on the same transmission tower is an economical and practical approaching that increase the power transmission capacity of an existing transmission corridor. But, In this case, Inductive and capacitive coupling between AC and DC lines on the same tower should be investigated in advance. According to the installation plan of ${\pm}80kV$ 60MW bipole HVDC in Jeju island, KOREA that will be commissioned until 2011, DC lines will parallely operate with 154kV 2 AC lines in existed 154kV AC 4 lines transmission tower. This paper presents the transient analysis results about the interaction between 154kV AC and 80kV DC lines in the same transmission tower.

A novel AC-DC switching technology without inductors (인덕터를 사용하지 않는 새로운 AC-DC 변환 방식)

  • Yoon, Jin-Han;Cha, Hyeong-Woo;Lee, Man-Seop;Cho, Young-Chang
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.138-140
    • /
    • 2007
  • A novel AC-DC switching technology is suggested without inductors for one-chip semiconductor. The suggested converter consists of a rectifier diodes, AC source level detector, switching control, detector of over-current and voltage, feedback controller and switching block, The key technology of the proposed AC-DC converting methode is detecting of the low level voltage for AC voltage, power control transistor and rectifying of DC level. The measurement results with commercial devices show that the converter has power efficiency of 66.5% for DC 12V 0.24A and the standby power is 49.58mW at AC 110V.

  • PDF

Capacitance Estimation of DC-Link Capacitors of Three-Phase AC/DC/AC PWM Converters using Input Current Injection (입력전류 주입을 이용한 3상 AC/DC/AC PWM 컨버터의 직류링크 커패시터 용량 추정)

  • 이강주;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a novel on-line dc capacitance estimation method for the three-phase PWM converter is proposed. At no load, input current at a low frequency is injected, which causes dc voltage ripple. With the at voltage and current ripple components of the dc side, the capacitance can be calculated. Experimental result shows that the estimation error is less than 2%.

Identification of DC-Link Capacitance for Single-Phase AC/DC PWM Converters

  • Pu, Xing-Si;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.270-276
    • /
    • 2010
  • In this paper, a capacitance estimation scheme for DC-link capacitors for single-phase AC/DC PWM converters is proposed. Under the no-load condition, a controlled AC current (30[Hz]) is injected into the input side, which then causes AC voltage ripples at the DC output side. Or, a controlled AC voltage can be directly injected into the DC output side. By extracting the AC voltage/current and power components on the DC output side using digital filters, the capacitance value can be calculated, where the recursive least squares (RLS) algorithm is used. The proposed methods can be simply implemented with software only and additional hardware is not required. From the experiment results, a high accuracy estimation of capacitances less than 0.85% has been obtained.

The Assessment and Development of Protection Models in HVDC DC side (HVDC시스템의 직류측 보호 모델 개발)

  • Lee, Seong-Doo;Kim, Chan-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1754-1760
    • /
    • 2010
  • The HVDC system consists of ac side and dc side through thyristor valve. ac side protection is similar to conventional ac system protection schemes but dc side protection is different from ac side of HVDC system. AC system don't have controller but HVDC system has controller that controls and protects system from faults and disturbance. This paper show protectional function of HVDC dc side such as asymmetry protection, ac/dc differential protection, dc overvoltage, dc overcurrent protection. Protection models is developed using RTDS software and assessment of protection models is also performed by RTDS system.

Analysis of DC Link Ripple Currents in Three-Phase AC/DC/AC PWM Converters (3상 AC/DC/AC PWM 컨버터의 직류링크 리플전류 해석)

  • Park Young-Wook;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.223-226
    • /
    • 2001
  • In this paper, dc link ripple currents for three-phase ac/dc/ac PWM converters are analyzed in a frequency domain. The expression of the harmonic currents is developed by using switching functions and exponential Fourier series expansion. The dc link ripple currents with regard to power factor and modulation index are investigated. In addition, the effect of the displacement angle between the switching periods of line-side converters and load-side inverters on the do link ripple current is studied. The result of the do link current analysis is helpful in specifying the dc link capacitor size and its life time estimation.

  • PDF

AC and DC anodization on the electrochemical properties of SS304L: A comparison

  • Nur S. Azmi;Mohd N. Derman;Zuraidawani Che Daud
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.153-160
    • /
    • 2024
  • This study investigates the application of alternating current (AC) and direct current (DC) anodization techniques on stainless steel 304L (SS304L) in an ethylene glycol and ammonium fluoride (NH4F) electrolyte solution to produce a nano-porous oxide layer. With limited research on AC anodizing of stainless steel, this study focuses on comparing AC and DC anodization in terms of current density versus time response, phase analysis using X-ray diffraction (XRD), and corrosion rate determined by linear polarization. Both AC and DC anodization were performed for 60 minutes at 50 V in an electrolyte solution containing 0.5% NH4F and 3% H2O in ethylene glycol. The results show that AC anodization exhibited higher current density compared to DC anodization. XRD analysis revealed the presence of ferrite (α-Fe) and austenite (γ-Fe) phases in the as-received specimen, while both AC and DC anodized specimens exhibited only the γ-Fe phase. The corrosion rate of the AC-anodized specimen was measured at 0.00083 mm/year, lower than the corrosion rate of the DC-anodized specimen at 0.00197 mm/year. These findings indicate that AC anodization on stainless steel offers advantages in terms of higher current density, phase transformation, and lower corrosion rate compared to DC anodization. These results highlight the need for further investigation and exploration of AC anodization as a promising technique for enhancing the electrochemical properties of stainless steel.

A Feasibility Study on DC Microgrids Considering Energy Efficiency (에너지 효율분석을 통한 DC 마이크로그리드의 타당성 검토)

  • Yu, Cheol-Hee;Chung, Il-Yop;Hong, Sung-Soo;Chae, Woo-Kyu;Kim, Ju-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1674-1683
    • /
    • 2011
  • More than 80% of electric loads need DC electricity rather than AC at the moment. If DC power could be supplied directly to the terminal loads, power conversion stages including rectifiers, converters, and power adapters can be reduced or simplified. Therefore, DC microgrids may be able to improve energy efficiency of power distribution systems. In addition, DC microgrids can increase the penetration level of renewable energy resources because many renewable energy resources such as solar photovoltaic(PV) generators, fuel cells, and batteries generate electric power in the form of DC power. The integration of the DC generators to AC electric power systems requires the power conversion circuits that may cause additional energy loss. This paper discusses the capability and feasibility of DC microgrids with regard to energy efficiency analysis through detailed dynamic simulation of DC and AC microgrids. The dynamic simulation models of DC and AC microgrids based on the Microgrid Test System in KEPCO Research Institute are described in detail. Through simulation studies on various conditions, this paper compares the energy efficiency and advantages of DC and AC microgrids.

Diagnosis Methods for IGBT Open Switch Fault Applied to 3-Phase AC/DC PWM Converter

  • Im, Won-Sang;Kim, Jang-Sik;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.120-127
    • /
    • 2012
  • Fault diagnosis technique of electrical drives is becoming more and more important, since voltage fed converter system has become industrial standard in many applications. Many studies have been conducted an inverter fault diagnosis for induction motors. However, there are few researches about fault diagnosis of 3-phase ac/dc PWM (Pulse Width Modulation) converter compared to the dc/ ac inverter. The ac/dc converter is the opposite of dc/ac inverter at current flow. Also, inverter and converter have different current patterns under the same condition of IGBT (Insulated gate bipolar transistor) open switch fault. Therefore, it is difficult to apply intact diagnosis methods of inverter to the converter. This paper proposes modified fault detection methods for IGBT open switch fault in 3-phase ac/dc PWM converter by modifying established fault diagnostic methods for dc/ac inverters.