• Title/Summary/Keyword: ABS Resin

Search Result 62, Processing Time 0.025 seconds

Mechanical properties of ABS resin reinforced with recycled CFRP

  • Ogi, Keiji;Nishikawa, Takashi;Okano, Yasutaka;Taketa, Ichiro
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.181-194
    • /
    • 2007
  • This paper presents the mechanical properties of a composite consisting of acrylonitrile-butadiene-styrene (ABS) resin mixed with carbon fiber reinforced plastics (CFRP) pieces (CFRP/ABS). CFRP pieces made by crushing CFRP wastes were utilized in this material. Nine kinds of CFRP/ABS compounds with different weight fraction and size of CFRP pieces were prepared. Firstly, tensile and flexural tests were performed for the specimens with various CFRP content. Next, fracture surfaces of the specimens were microscopically observed to investigate fracture behavior and fiber/resin interface. Finally, the tensile modulus and strength were discussed based on the macromechanical model. It is found that the elastic modulus increases linearly with increasing CFRP content while the strength changes nonlinearly. Microscopic observation revealed that most carbon fibers are separated individually and dispersed homogeneously in ABS resin. Epoxy resin particles originally from CFRP are dispersed in ABS resin and seem to be in good contact with surrounding resin. The modulus and strength can be expressed using a macromechanical model taking account of fiber orientation, length and interfacial bonding in short fiber composites.

The Optimum Solution for the Best Performance of ABS (ABS수지 성능 최적화 방안)

  • Mun, Hong-Guk;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.105-110
    • /
    • 2007
  • We investigated resin, thinner, painting, and injection for analyzing the chemical effect of polymer, and made the optimum solution with the best performance of ABS (acrylonitrile butadiene styrene) resin. The effect depended on chemical material especially its chemical and physical properties instead of mechanical transformation. When we looked over ABS resin, injection, chemical material and painting, we found out thinner was the main factor for painting problem. Throughout this test, we could solve the problem, secure the system for control process and drop many factors for changing quality.

Synthesis of Flame Retardants for ABS using Cyclophosphazene (Cyclophosphazene을 이용한 ABS용 난연제의 합성)

  • Shin, Young-Jae;Kim, Hae-Young;Shin, Jae-Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.142-151
    • /
    • 2007
  • Non-halogen flame retardant have been focus of extensive research because of environmental problem. Hexakisphenokycyclotriphosphazene was synthesized in order to use as the flame retardant of ABS resin. And using bisphenol A, bisphenol S, and resorcinol, the polymers which contained cyclophosphazene structure were synthesized in order to also use as the flame retardants of ABS resin. All of the synthesized polymers themselves got the excellent flame retardancy. And as the molecular weight of the compound were increased, the thermal stability was increased. But when the synthesized compounds were used as the flame retardants for ABS resin, the lower molecular weight compound in these compounds showed the better flame retardancy and the better physical properties of ABS resin. In case of using resorcinol, it showed the best flame retardancy.

Synthesis of Cyclotriphosphazene Derivatives for Flame Retardants (Cyclotriphosphazene을 이용한 난연제의 합성)

  • Kim, Hae Young;Shin, Young Jae;Ji, Young Jon;Shin, Jae Sup
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • Non-halogen flame retardants have been the focus of extensive research because of environmental problems. Hexakisp-henoxycyclotriphosphazene was synthesized in order to use as the flame retardant of ABS resin. And using bisphenol A, the polymers containing a cyclotriphosphazene structure were synthesized in order to also use as the flame retardant of ABS resin. All of the synthesized polymers themselves had the excellent flame retardancy. And as their molecular weight and crosslinking density were increased, the thermal stability was increased. But when the synthesized compounds were used as the flame retardant for ABS resin, the lower molecular weight compound in these compounds showed the better flame retardancy and the better physical properties of ABS resin.

The Viscosity Change of ABS Resin According to Inert Gas Amount (가스의 용해량에 따른 ABS 수지의 점도 변화)

  • 정태형;하영욱;정대진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.585-590
    • /
    • 1997
  • Conventional foaming process has defects such as lower mechanical properties than ur~foaming material due to non-uniform cell distribution and environmental pollution problem caused by chemical blowing agency. So, a new foaming process such as Microcelluar plastics has been introduced to use inactive gases as a foaming agency. In order to apply Microcellular plastics for mass production process system such as extrusion, injection molding and blow molding, it needs to predict the change in material properties of polymer according to the amount of meltingas. In Polymer molding applying Microcelluar plastics, the change of viscosity among several material properties is the most important factor. Therefore, this paper is aimed to establish the method which not only finds out but also predicts the change of viscosity of ABS(Acrylonitri1e Butadiene Styrene) resin according to inert gas amount in extrusion molding.

  • PDF

Study on the Liquefaction Characteristics of ABS Resin in a Low-Temperature Pyrolysis (ABS 수지의 저온 열분해에 의한 액화특성 연구)

  • Choi, Hong Jun;Jeong, Sang Mun;Lee, Bong-Hee
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.417-422
    • /
    • 2011
  • The low temperature pyrolysis of ABS resin has been carried out in a batch reactor under the atmospheric pressure. The effect of the reaction temperature on the yield of pyrolytic oils has been determined in the present study. The oil products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The conversion reaches 80% after 60 min at $500^{\circ}C$ in the pyrolysis of ABS resin. The amount of the final product was ranked as gas heavy oil > gasoline > gas oil > kerosen based on the yield. The yields of heavy oil and gas oil increase with an increase in the reaction time and temperature.

A Study on the Applicability of 3D Ceramic Printing Technology for Restoration of the Missing Part of Damaged Ceramics (훼손 도자기 결실부 복원을 위한 3D 세라믹 프린팅 기술의 기초 적용성 연구)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.165-173
    • /
    • 2020
  • ABS and PLA are applied for restoring missing part of damaged ceramics, but are not similar to the material of ceramics, so this study conducted a research on the properties and applicability of ceramic resin. This study conducted actual restoration of ABS and ceramic resin as well as cast restoration method with experiment of properties. Results show that manufacturing of restored part showed higher precision than existing materials, which enables printing of tiny shapes showing excellent surface texture and gloss than L30 and ABS resin. As a result of measuring properties, the material showed excellent durability than existing materials with no contraction and deformation and compressive strength, but value of specific gravity and hardness can lower processability after manufacturing. Long-term monitoring, evaluation of reliability of ceramic resin applied in this study, additional researches on the restorability of the original shape when printing too thin or long restored part are needed.

Development of high efficiency impeller for the process of ABS resin cohesion by using flow measurement (유동계측을 이용한 ABS 수지 응집 공정 혁신을 위한 고성능 교반기 임펠러 개발)

  • Kim, Jung-Hwan;Park, Jae-Hyoun;Lee, Hyun-Sik;Ok, Pyeong-Kweon;An, Ik-Jin
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.325-326
    • /
    • 2006
  • 현 화학플랜트에서 사용되고 있는 ABS 수지 응집 공정의 경우 교반기 내부의 불균일한 유동분포와 유동메커니즘의 문제점은 공정 제품의 생산성을 저하 시키는 원인으로 작용하고 있다. 그러나 우수한 성능의 산업용 교반기를 설계하기 위해선 반드시 교반성능에 영향을 미치는 다양한 내부의 유동특성의 정량적인 실험 데이터 확보가 필요하나, 3차원적 비정상 특성을 나타내는 복잡한 구조의 내부 유동특성에 관한 정량적 해석은 현재까지도 상당한 어려운 문제로 남아있다. 이에 이런 문제점을 개선하여 생산성을 향상시키기 위해서는 PIV 기법을 이용한 교반기 내부의 유동분포와 유동메커니즘을 규명하여 교반기 내부의 최적화된 유동을 형성시키는 임펠러의 형상을 개발하고자 한다.

  • PDF

Thermal and Mechanical Properties of Flame Retardant ABS Nanocomposites Containing Organo-Modified Layered Double Hydoxide (유기변성 LDH를 사용한 난연 ABS 나노복합재료의 열적 및 기계적 물성)

  • Kim, Seog-Jun
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.241-252
    • /
    • 2008
  • ZnAl-LDH(layered double hydroxide) modified with oleic acid(SO-ZnAl LDH) was synthesized and added to the flame retardant ABS compounds containing brominated epoxy resin(BER) and antimony trioxide(${Sb_2}{O_3}$). Flame retardant ABS compounds were manufactured by using a twin-screw co-rotating extruder and subsequently injection molded into several specimen for flame retardancy and mechanical properties. The XRD patterns of ABS nanocomposites showed no peaks. The thermal stability of ABS nanocomposites was enhanced by the addition of SO-ZnAl LDH as shown in TGA results. However, these nanocomposites showed no rating in the UL 94 vertical test at 1.6 mm thickness. Only ABS nanocomposites with additional BER more than 1.5 wt% showed UL 94 V0 rating. Notched Izod impact strength, tensile modulus, and elongation at break of flame retardant ABS nanocomposites increased with the proportion of So-ZnAl LDH whereas their melt index decreased.