• Title/Summary/Keyword: ABS (Acrylonitrile Butadiene Styrene)

Search Result 113, Processing Time 0.027 seconds

Optimization of FSW of Nano-silica-reinforced ABS T-Joint using a Box-Behnken Design (BBD)

  • Mahyar Motamedi Kouchaksarai ;Yasser Rostamiyan
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • This experimental study investigated friction stir welding (FSW) of the acrylonitrile-butadiene-styrene (ABS) T-joint in the presence of various nano-silica levels. This study aim to handle the drawbacks of the friction stir welding (FSW) of an ABS T-joint with various quantity of nanoparticles and assess the performance of nanoparticles in the welded joint. Moreover, the relationship between the nanoparticle quantity and FSW was analyzed using response surface methodology (RSM) Box-Behnken design. The input parameters were the tool rotation speed (400, 600, 800 rpm), the transverse speed (20, 30, 40 mm/min), and the nano-silica level (0.8, 1.6, 2.4 g). The tensile strength of the prepared specimens was determined by the universal testing machine. Silica nanoparticles were used to improve the mechanical properties (the tensile strength) of ABS and investigate the effect of various FSW parameters on the ABS T-joint. The results of Box-Behnken RSM revealed that sound joints with desired characteristics and efficiency are fabricated at tool rotation speed 755 rpm, transverse speed 20 mm/min, and nano-silica level 2.4 g. The scanning electron microscope (SEM) images revealed the crucial role of silica nanoparticles in reinforcing the ABS T-joint. The SEM images also indicated a decrease in the nanoparticle size by the tool rotation, leading to the filling and improvement of seams formed during FSW of the ABS T-joint.

Thermal residues analysis of plastics by FT-near infrared spectroscopy (근적외선분광법을 이용한 플라스틱류의 연소 잔류물 분석)

  • Lee, So Yun;Cho, Won Bo;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.234-239
    • /
    • 2017
  • Identifying the components of residues that are not completely burned at the sites of fires site can provide valuable information for tracing the causes of fires. In order to clarify the types of plastic combustion residues found at the scenes of fires, we studied the residue formed after the combustion of polyethylene (PE) and acrylonitrile butadiene styrene (ABS). Plastic samples were burned at 200, 300, 350, 400, and $500^{\circ}C$ for 3 min using a cone calorimeter, and the changes in weight and combustion products were observed. The powder products obtained by lyophilization and pulverization of the combustion products obtained at each temperature were analyzed by a Fourier transform-near infrared (FT-NIR) spectrometer. When the PE samples were burned, the weight did not change up to $350^{\circ}C$, however a significant change in the weight could be measured above $400^{\circ}C$. The principal component analysis (PCA) of the FT-NIR spectra of the PE and ABS samples obtained at each temperature confirmed that the combustion residues at each temperature were PE and ABS, respectively. Therefore, the types of unburned plastics found at the sites of fires can be confirmed rapidly by near infrared spectroscopy.

The Relation between Injection Molding Conditions and Gloss of ABS Molding (사출성형 조건과 ABS 성형품 광택의 관계)

  • Han, Seong-Ryeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5352-5356
    • /
    • 2013
  • Plastic product manufacturing industry has usually focused on a mechanical and physical characteristics of molding. Recently, not only these characteristics but also the aesthetic value is significantly considering. Especially, the molding's gloss, which we can easily distinguish, is an important aesthetic point. In this study, it were investigated that the gloss variation of ABS moldings by changing injection conditions such as injection pressures, injection speed, holding pressures melt and mold temperatures by injection molding experiment. The experimental results revealed that the holding pressure was the most active condition on gloss of ABS molding.

Mechanical properties of ABS resin reinforced with recycled CFRP

  • Ogi, Keiji;Nishikawa, Takashi;Okano, Yasutaka;Taketa, Ichiro
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.181-194
    • /
    • 2007
  • This paper presents the mechanical properties of a composite consisting of acrylonitrile-butadiene-styrene (ABS) resin mixed with carbon fiber reinforced plastics (CFRP) pieces (CFRP/ABS). CFRP pieces made by crushing CFRP wastes were utilized in this material. Nine kinds of CFRP/ABS compounds with different weight fraction and size of CFRP pieces were prepared. Firstly, tensile and flexural tests were performed for the specimens with various CFRP content. Next, fracture surfaces of the specimens were microscopically observed to investigate fracture behavior and fiber/resin interface. Finally, the tensile modulus and strength were discussed based on the macromechanical model. It is found that the elastic modulus increases linearly with increasing CFRP content while the strength changes nonlinearly. Microscopic observation revealed that most carbon fibers are separated individually and dispersed homogeneously in ABS resin. Epoxy resin particles originally from CFRP are dispersed in ABS resin and seem to be in good contact with surrounding resin. The modulus and strength can be expressed using a macromechanical model taking account of fiber orientation, length and interfacial bonding in short fiber composites.

Jig Separation of Plastic Waste Used in Copy Machines

  • Tsunekawa, Masami;Naoi, Banryu;Takubo, Tetsuo;Hirajima, Tsuyoshi;Hiroyoshi, Naoki;Otani, Masaru;Miyamoto, Masahiro;Ito, Masazumi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.592-596
    • /
    • 2001
  • A TACUB jig was applied to separate waste plastics [polystyrene (PS), acrylonitrile butadiene styrene (ABS), and polyethylene terephthalate (PET)] used in copy machine. The effect of water pulsation including amplitude and frequency on the separation performance was investigated for the feeds containing two or three plastics. Good results are obtained under suitable conditions. Grades of 99.8% PS,99.3% ABS, and 98.6% PET are recovered as the products in the upper, middle and bottom layers respectively. Based on these results, a processing plant fer recycling of plastics from scrapped copy machines is now under construction.

  • PDF

Plasma treatment on PMMA, PET & ABS for Superhydrophobicity (플라즈마 처리에 의한 PMMA, PET, ABS의 초발수 효과)

  • Choi, Gyoung-Rin;Noh, Jung-Hyun;Lee, Jun-Hee;Kim, Wan-Doo;Lim, Hyun-Eui
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1582-1584
    • /
    • 2008
  • This paper reports a simple fabrication method for creating the superhydrophobic polymer surface using a plasma etching. Generally, it is necessary for the superhydrophobic surfaces to have a rough structure on surface with the composition of the low surface energy. In this study, Poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate) (PET), acrylonitrile butadiene styrene (ABS) with superhydrophobic surface were fabricated using $O_2$ plasma etching and vapor deposition with the fluoroalkylsilane self-assembled monolayers. The plasma treated polymer surfaces are covered with the nano-pillar shaped structures after treatment for $1{\sim}2min$. And these samples with FOTS SAMs coating are showed the superhydrophobicity having the water contact angle of around $150^{\circ}$ and sometimes around $180^{\circ}$ depending on the treatment time. Furthermore the nanostructured polymer is transparent for the visible light.

  • PDF

가스사출성형에서 성형조건에 따른 ABS 성형품의 가스채널의 변화

  • 박태원;한성렬;정영득
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.221-221
    • /
    • 2004
  • 플라스틱의 사출성형중 용용 수지에 가스를 주입하는 가스사출성형(Gas Assisted Injection Molding GAIM)에 의해 성형품을 만드는 생산방법은 약 30년 전부터 유럽지역을 중심으로 시작되었다 GAIN의 개발 배경은 발포성형을 대체하기 위한 공법으로 개발되었다. 발포성형은 싱크마크(sink mark) 제거, 치수안정성, 강도보강의 목적으로 사용하는 공법이지만, 가스기포가 표면으로 빠져나오고 표면에 가스 기포가 발생하여 외관부품에 부적당하며, 두께가 5-6mm이하의 성형품에는 적용할 수 없고, 성형시간이 긴 문제점을 가지고 있어 이러한 문제를 보강한 공법을 연구할 결과로 GAIM이 탄생하게 되었다.(중략)

  • PDF

Measurement of Loss Factor and Young's Modulus of ABS and PP Specimens by Using a Speaker (스피커를 이용한 ABS와 PP의 손실계수 및 영률 측정)

  • Jeon, Byeong Su;Jung, Sung Soo;Lee, Jong Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.724-730
    • /
    • 2014
  • It is essential to control noise and vibration in various industrial fields. In the automobile industry, various plastics have been developed and replaced metallic materials in order to reduce mass and vibration effectively. In this study, we measured and analyzed the Young's moduli and the loss factors of Acrylonitrile butadiene styrene(ABS) and Polypropylene(PP). In order to solve the fundamental error to determine the two quantities, a loudspeaker was used instead of conventional electromagnetic devices to generate bending motion to the specimens and a laser vibrometer was also used in detection of vibration signal of the specimen. The measured Young's moduli and loss factors of the ABS specimen were nearly constant as the temperature($-10{\sim}60^{\circ}C$) was increased. The loss factor of PP specimen showed peak value at $20^{\circ}C$ and it means that there is glass transition for the PP specimen. Young's modulus of PP specimen was linearly decreased as the temperature was increased.

Evaluation on Mechanical Properties of PC and ABS Plastic Materials by Repetitive Impact (PC와 ABS 플라스틱재료의 반복적인 충격하중에 의한 기계적 특성 평가)

  • Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.375-380
    • /
    • 2020
  • In this study, we tried to evaluate the mechanical properties of Polycarbonate(PC) and acrylonitrile-butadiene-styrene(ABS) plastic materials, which are frequently used as parts of home appliances and machinery, when repeated impacts were applied. A repeating impact tester for this research was designed and manufactured to apply repetitive impacts. Two types of plastic were repeatedly impacted under a constant load, and a tensile test was performed on the plastic material that was impacted. The tensile strength of PC plastic materials that received impact more than 2000 times was reduced by about 45 % and elongation was reduced by about 10 % when compared to impact free specimens. On the other hand, in ABS plastic, a reduction of tensile strength of about 20 % was observed at about 2,000 impacted specimen, but at about 20,000 repetitive impacted specimen, a tensile strength decrease of about 65 % was observed. And the elongation was reduced by 10 % due to the cyclic harding behavior of the material.

Study on the Development of Highly Efficient Compatibilizer for Polymer Alloys (고분자 알로이용 고효율 상용화제의 개발에 관한 연구)

  • Cho, Chang Gi
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.757-767
    • /
    • 1996
  • Poly(alkyl acrylate-g-caprolactone) graft copolymers were prepared, and they were applied as compatibilizing agents for polycarbonate (PC) / poly(acrylonitrile-butadiene-styrene) (ABS) blends. The incompatible poly(alkyl acrylate) segment was incorporated into the graft copolymer in order to localize the copolymer at the PC/ABS interface. The blend containing 1 phr of the copolymer showed remarkable improvement in impact strength as well as in elongation at break. Impact improvement was more pronounced with a thinner test specimens of 1/8 inch thickness. Morphological study showed that the presence of the graft copolymer led to a smoother PC/ABS interface due to the interfacial enrichment of the graft copolymer.

  • PDF