• 제목/요약/키워드: ABS/ASR

검색결과 5건 처리시간 0.019초

상용차용 ABS ECU 개발을 위한 HILS 시스템 설계 및 구현 (Implementation and Design of HILS for Development of the ABS ECU for Commercial Vehicle)

  • 황돈하;조정목;심우용;박도영;김용주;조중선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.609-611
    • /
    • 2000
  • ABS(Antilock Brake System), Prevents the wheels from "locking" and improve steering during braking. Currently, safety and environmental issues are a major concern in the automotive industry. ABS has become the vital brake system HILS (Hardware In-the-Loop Simulation) is an effective tool for design. performance evaluation and test of developed vehicle subsystems such as ABS. suspension. and steering systems. This paper describes a HILS model for an ABS/ASR application Also the design and implementation of HILS system for development of the ABS ECU(Electronic Centre) Unit) for commercial vehicle are presented.

  • PDF

상용차용 ABS ECU의 성능분석을 위한 HILS 시스템 구축 (Implementation of HILS System for Performance Test of the ABS ECU for Commercial Vehicles)

  • 조정목;황돈하;박도영;김용주;조중선;박성경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2564-2566
    • /
    • 2000
  • HILS(Hardware In-the-Loop Simulation) is an effective tool for design, performance evaluation and test of developed vehicle subsystems such as ABS(Antilock Brake System), suspension, and steering systems. This paper describes a HILS model for an ABS/ASR application. Also the implementation of HILS system for performance test of the ABS ECU(Electronic Control Unit) for commercial vehicles is presented.

  • PDF

상용차용 ABS ECU의 성능분석을 위한 HILS 시스템 개발 (Development of HILS System for Performance Analysis of the ABS ECU for Commercial Vehicles)

  • 황돈하;이기창;전정우;김용주;조정목;조중선
    • 제어로봇시스템학회논문지
    • /
    • 제8권10호
    • /
    • pp.898-906
    • /
    • 2002
  • Antilock Brake System (ABS) is designed to prevent wheels from being locked-up under emergency braking of a vehicle. Therefore it improves directional stability of the vehicle, shortens stopping distance, and enhances maneuvering during braking, regardless of road conditions. Hardware In-the-Loop Simulation (HILS) is an effective tool for design Performance evaluation and test of vehicle subsystems such as ABS, active suspension, and steering systems. This paper describes a HILS model for ABS/ ASR(Acceleration Slip Regulation) system applications. A fourteen degrees-of-freedom vehicle dynamics model is simulated in an alpha-chip processor board. The proposed HILS system is tested with a basic ABS control algorithm. The design and implementation of HILS system for the ABS ECU(Electronic Control Unit) development of commercial vehicle are presented. The results show that the proposed HILS system can be used to test the performance, stability, and reliability of a vehicle under braking.

CVT 및 BrakeForce 제어를 통한 차량 주행 안정성 향상 (Improving Vehicle Driving Stability by Controlling CVT and Brake Force)

  • 조현욱;이승종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.305-308
    • /
    • 2002
  • The mechanics, electronics and manufacturing technology have been developed rapidly. Nowadays vehicle stability becomes more and more important then ABS (Anti-lo7k Brake System), ASR (Anti-Slip Regulator), TCS, (Traction Control System), ESP (Electronic Stability Program), and VDC (Vehicle Dynamic Control) which actively control the vehicle stability actively has been improved. In this study, instead of automatic transmission, CVT (Continuously Variable Transmission) is used because of the continuously gear ratio changes. It can effectively transfer the torque from engine to tire more than other gear transmission. The modeling is simplified assuming that there are no resistance parameters.

  • PDF

VDC장치 개발을 위한 코너제동 실험 및 시뮬레이션 (Corner Braking Test and Simulation for Development of VDC System)

  • 이창노;박혁성;김영관
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.211-216
    • /
    • 2003
  • The influence of braking force generated by one tire on vehicle dynamics was investigated by simulation and ground test. A 8 d. o. f vehicle model was developed for simulation. And a special device to apply brake pressure to individual wheel was built for vehicle test. As a result of corner braking test on straight driving, the dynamic responses such as yawrate, lateral acceleration and roll angle were produced in the vehicle, which were in a good agreement to the simulation results. This shows that comer braking used in VDC system can control vehicle dynamics to improve controllability and directional stability.