• Title/Summary/Keyword: AB=I

Search Result 393, Processing Time 0.024 seconds

Rapid Dot-Blot Immunoassay for Detecting Multiple Salmonella enterica Serotypes

  • Jeongik Cho;Heymin Song;Hyun C. Yoon;Hyunjin Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.340-348
    • /
    • 2024
  • Salmonella, a major contributor to foodborne infections, typically causes self-limiting gastroenteritis. However, it is frequently invasive and disseminates across the intestinal epithelium, leading to deadly bacteremia. Although the genus is subdivided into >2,600 serotypes based on their antigenic determinants, only few serotypes are responsible for most human infections. In this study, a rapid dot-blot immunoassay was developed to diagnose multiple Salmonella enterica serotypes with high incidence rates in humans. The feasibility of 10 commercial antibodies (four polyclonal and six monoclonal antibodies) was tested using the 18 serotypes associated with 67.5% Salmonella infection cases in the United States of America (U.S.A) in 2016. Ab 3 (polyclonal; eight of 18 serotypes), Ab 8 (monoclonal; 13 of 18 serotypes), and Ab 9 (monoclonal; 10 of 18 serotypes) antibodies exhibited high detection rates in western blotting and combinations of two antibodies (Ab 3+8, Ab 3+9, and Ab 8+9) were applied to dot-blot assays. The combination of Ab 3+8 identified 15 of the tested 18 serotypes in 3 h, i.e., S. Enteritidis, S. Typhimurium, S. Javiana, S. I 4,[5],12:i:-, S. Infantis, S. Montevideo, S. Braenderup, S. Thompson, S. Saintpaul, S. Heidelberg, S. Oranienburg, S. Bareilly, S. Berta, S. Agona, and S. Anatum, which were responsible for 53.7% Salmonella infections in the U.S. in 2016. This cost-effective and rapid method can be utilized as an on-site colorimetric method for Salmonella detection.

WEYL@S THEOREMS FOR POSINORMAL OPERATORS

  • DUGGAL BHAGWATI PRASHAD;KUBRUSLY CARLOS
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.529-541
    • /
    • 2005
  • An operator T belonging to the algebra B(H) of bounded linear transformations on a Hilbert H into itself is said to be posinormal if there exists a positive operator $P{\in}B(H)$ such that $TT^*\;=\;T^*PT$. A posinormal operator T is said to be conditionally totally posinormal (resp., totally posinormal), shortened to $T{\in}CTP(resp.,\;T{\in}TP)$, if to each complex number, $\lambda$ there corresponds a positive operator $P_\lambda$ such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P_{\lambda}^{\frac{1}{2}}(T-{\lambda}I)|^{2}$ (resp., if there exists a positive operator P such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P^{\frac{1}{2}}(T-{\lambda}I)|^{2}\;for\;all\;\lambda)$. This paper proves Weyl's theorem type results for TP and CTP operators. If $A\;{\in}\;TP$, if $B^*\;{\in}\;CTP$ is isoloid and if $d_{AB}\;{\in}\;B(B(H))$ denotes either of the elementary operators $\delta_{AB}(X)\;=\;AX\;-\;XB\;and\;\Delta_{AB}(X)\;=\;AXB\;-\;X$, then it is proved that $d_{AB}$ satisfies Weyl's theorem and $d^{\ast}_{AB}\;satisfies\;\alpha-Weyl's$ theorem.

REVERSIBLE AND PSEUDO-REVERSIBLE RINGS

  • Huang, Juan;Jin, Hai-lan;Lee, Yang;Piao, Zhelin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1257-1272
    • /
    • 2019
  • This article concerns the structure of idempotents in reversible and pseudo-reversible rings in relation with various sorts of ring extensions. It is known that a ring R is reversible if and only if $ab{\in}I(R)$ for $a,b{\in}R$ implies ab = ba; and a ring R shall be said to be pseudoreversible if $0{\neq}ab{\in}I(R)$ for $a,b{\in}R$ implies ab = ba, where I(R) is the set of all idempotents in R. Pseudo-reversible is seated between reversible and quasi-reversible. It is proved that the reversibility, pseudoreversibility, and quasi-reversibility are equivalent in Dorroh extensions and direct products. Dorroh extensions are also used to construct several sorts of rings which are necessary in the process.

The Characterization of Anti-HER-2/neu Monoclonal Antibody using Different in vivo Imaging Techniques

  • Moon, Cheol;Kim, Eun Jung;Choi, Dan Bee;Kim, Byoung Soo;Kim, Sa Hyun;Choi, Tae Hyun
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.23-31
    • /
    • 2015
  • Recently, specific antibodies have been used extensively to diagnose and treat various diseases. It is essential to assess the efficacy and specificity of antibodies, especially the in vivo environment. Anti-HER-2/neu mAb was evaluated as a possible transporting agent for radioimmunotherapy. The monoclonal antibody was successfully radio-labeled with $^{131}I$. In vitro binding assays were performed to confirm its targeting ability using another radio-iodine, $^{125}I$. Binding percentage of $^{125}I$ labeled anti-HER-2/neu mAb in HER-2/neu expressing CT-26 cells was found to be 4.5%, whereas the binding percentage of $^{125}I$ labeled anti-HER-2/neu mAb in wild-type CT-26 was only 0.45%. In vivo images were obtained and analyzed through $\gamma$-camera and an optical fluorescent modality, IVIS-200. $\gamma$-camera images showed that $^{131}I$ labeled anti-HER-2/neu mAb accumulated in HER-2/neu CT-26 tumors. Optical imaging based on near infrared fluorescence labeled anti-HER-2/neu mAb showed higher fluorescence intensities in HER-2/neu CT-26 tumors than in wild-type CT-26 tumors. Anti-HER-2/neu mAb was found to specifically bind to its receptor expressing tumor. Our study demonstrates that in vivo imaging technique is a useful method for the evaluation of an antibody's therapeutic and diagnostic potentials.

DISTRIBUTIVE PROPERTIES OF ADDITION OVER MULTIPLICATION OF IDEMPOTENT MATRICES

  • Wanicharpichat, Wiwat
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1603-1608
    • /
    • 2011
  • Let R be a ring with identity. If a, b, $c{\in}R$ such that a+b+c = 1, then the distributive laws from addition over multiplication hold in R, that is a+(bc) = (a+b)(a+c) when ab = ba, and (ab)+c = (a+c)(b+c) when ac = ca. An application to obtains, if A,B are idempotent matrices and AB = BA = 0 then there exists an idempotent matrix C such that A + BC = (A + B)(A + C), and also A + BC = (I - C)(I - B). Some other cases and applications are also presented.

ON THE ADAPTED EQUATIONS IN VARIOUS DYPLOID MODEL AND HARDY-WEINBURG EQUILIBRIUM IN A TRIPLOID MODEL

  • Won Choi
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2023
  • For a locus with two alleles (IA and IB), the frequencies of the alleles are represented by $$p=f(I^A)={\frac{2N_{AA}+N_{AB}}{2N}},\;q=f(I^B)={\frac{2N_{BB}+N_{AB}}{2N}}$$ where NAA, NAB and NBB are the numbers of IAIA, IAIB and IBIB respectively and N is the total number of populations. The frequencies of the genotypes expected are calculated by using p2, 2pq and q2. Choi defined the density and operator for the value of the frequency of one gene and found the adapted partial differential equation as a follow-up for the frequency of alleles and applied this adapted partial differential equation to several diploid model [1]. In this paper, we find adapted equations for the model for selection against recessive homozygotes and in case that the alley frequency changes after one generation of selection when there is no dominance. Also we consider the triploid model with three alleles IA, IB and i and determine whether six genotypes observed are in Hardy-Weinburg for equilibrium.

A Novel cry2Ab Gene from the Indigenous Isolate Bacillus thuringiensis subsp. kurstaki

  • Sevim, Ali;Eryuzlu, Emine;Demirbag, Zihni;Demir, Ismail
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.133-140
    • /
    • 2012
  • A novel cry2Ab gene was cloned and sequenced from the indigenous isolate of Bacillus thuringiensis subsp. kurstaki. This gene was designated as cry2Ab25 and its sequence revealed an open reading frame of 1,902 bp encoding a 633 aa protein with calculated molecular mass of 70 kDa and pI value of 8.98. The amino acid sequence of the Cry2Ab25 protein was compared with previously known Cry2Ab toxins, and the phylogenetic relationships among them were determined. The deduced amino acid sequence of the Cry2Ab25 protein showed 99% homology to the known Cry2Ab proteins, except for Cry2Ab10 and Cry2Ab12 with 97% homology, and a variation in one amino acid residue in comparison with all known Cry2Ab proteins. The cry2Ab25 gene was expressed in Escherichia coli BL21(DE3) cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the Cry2Ab25 protein is about 70 kDa. The toxin expressed in BL21(DE3) exhibited high toxicity against Malacosoma neustria and Rhagoletis cerasi with 73% and 75% mortality after 5 days of treatment, respectively.

ON THE ADAPTED EQUATIONS FOR SEVERAL DYPLOID MODEL IN POPULATION GENETICS

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.30 no.1
    • /
    • pp.67-72
    • /
    • 2022
  • For a locus with two alleles (IA and IB), the frequencies of the alleles are represented by $$p=f(I^A)={\frac{2N_{AA}+N_{AB}}{2N},\;q=f(I^B)={\frac{2N_{BB}+N_{AB}}{2N}$$ where NAA, NAB and NBB are the numbers of IAIA, IAIB and IBIB respectively and N is the total number of populations. The frequencies of the genotypes expected are calculated by using p2, 2pq and q2. Choi showed the method of whether some genotypes is in these probabalities. Also he calculate the probability generating function for offspring number of genotype under a diploid model( [1]). In this paper, let x(t, p) be the probability that IA become fixed in the population by time t-th generation, given that its initial frequency at time t = 0 is p. We find adapted equations for x using the mean change of frequence of alleles and fitness of genotype. Also we apply this adapted equations to several diploid model and it also will apply to actual examples.