• Title/Summary/Keyword: AASHTO LRFD

Search Result 133, Processing Time 0.025 seconds

An evaluation of influence factors based on the limit state design-AASHTO LRFD for structural analysis of shield tunnel segment lining (한계상태설계법-AASHTO LRFD를 적용한 쉴드터널 세그먼트 라이닝의 구조해석 영향인자 평가)

  • Kim, Yang-Woon;Kim, Hong-Moon;Kim, Hyun-Su;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.99-118
    • /
    • 2018
  • Recently, the limit state design method in the design of the structure is in global trend, but it is limited to a few structures in Korea. Since the introduction of the limit state design method has recently been attempted for tunnels, which are the main underground structures, it is surely necessary to understand the latest limit state design method. Therefore, based on the recently published AASHTO LRFD Road Tunnel Design and Construction Guide Specification (2017), structural load factors and load combinations were reviewed, and various factors which should be applied for the review of structures have been analyzed. In this study, utility tunnel section and subway tunnel sections used in Korea were analyzed by the limit state design method, and we have analyzed the direction of application of limit state design method through studying the tendency of member force by various influential factors such as ground conditions, load modifier and joint stiffness.

Effect of Car-Crash at Edge Beam of U-Channel Bridge based on Korean Highway Bridge Specifications and AASHTO LRFD Bridge Design Specifications (도로교 설계기준 및 AASHTO LRFD 설계기준에 근거한 U-채널 교량측보의 차량충돌의 영향)

  • Choi, Dong-Ho;Na, Ho-Sung;Lee, Kwang-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.490-494
    • /
    • 2008
  • U-Channel Bridge is effective bridge type, because its edge beam performs role of barrier and enables to reduce additional dead loads. Although it is effective to reduce additional dead loads, there is possibility of bridge collapse under impact load due to car crash. Also, edge beam must have ability to induce safe driving and prevent falling accidents. Therefore, it requires behavior analysis and property investigation through the vehicle impact crashing edge beam. This study presents method of structural analysis of U-channel bridge and investigates design specifications for the effect of the edge beam under the vehicle impact. Also, it carries out stability investigation of behavior of edge beam and slab, based on Korean Highway Bridge Design Specifications and AASHTO LRFD Bridge Design Specification.

  • PDF

Design Specifications of Cable Stayed Bridge Across Chambal River (참발강 횡단 사장교의 설계기준)

  • Kim, Mo-Seh;Yoo, Jun-Yeol;Cho, Eu-Kyeong;Lee, Sang-Min
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.41-46
    • /
    • 2008
  • The bridge across Chambal River consists of two approach bridges and a cable stayed bridge with concrete girder and pylon. And the main bridge has been designed mainly based on AASHTO LRFD. This article covers design specifications from AASHTO LRFD, which are applied to load combinations and structural verification. And it also covers local standards applied in definition of loads such as live load, wind load, temperature, etc. In addition, the difference between applied design specifications and Korean standards is mentioned in this article briefly.

Verification of Lateral Live Load Distribution Factors for Continuous Steel Girder Bridges Based on Diagnostic Testing Results (현장계측결과를 이용한 강거더연속교의 횡방향 활하중 분배계수에 대한 연구)

  • Eom, Jun-sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.180-187
    • /
    • 2009
  • The objective of this research is to verify the code-specified girder distribution factors (GDF) for continuous steel girder bridges by field testing. Previous analytical study revealed that current GDF's specified in AASHTO Standard and AASHTO LRFD, developed for the simple span bridges are conservative even for the continuous bridges. In this study, field tests were performed for three continuous steel girder bridges to validate the GDF's specified in the AASHTO codes. The results show that the code values are conservative when compared with field tests, and in some cases, too conservative. Also, strains measured from the field test are, in most cases, smaller than those expected from the analytical results. However, when the GDF's from measured strains are compared with GDF's from analysis, it is found that the analysis results are not conservative, and in some instance, the analytical results underestimate the actual GDF's, which can lead to a groundless notion of safety. In one case, test results showed that the code GDF's specified in AASHTO LRFD is too permissive. As a result, it is found that GDF's specified in AASHTO LRFD should be used with careful reservation.

Flexural Strength of Composite HSB Girders in Positive Moment (HSB 강합성거더 정모멘트부의 휨저항강도)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.389-398
    • /
    • 2010
  • The flexural strength of composite HSB I-girders under a positive moment was investigated using the moment-curvature analysis method to evaluate the applicability of the current AASHTO LRFD design specifications to such girders. A total of 2,391 composite I-girder sections that satisfied the section proportion limits of the AASHTO LRFD specifications was generated by the random sampling technique to consider a wide range of section properties. The flexural capacities of the sections were calculated inthe nonlinear moment-curvature analysis in which the HSB600 and HSB800 steels were modeled as an elasto-plastic strain-hardening material, and the concrete, as a CEB-FIP model. The effects of the ductility ratio and the compressive strength of the concrete slab on the flexural strength of the composite girders made of HSB and SM520-TMC steels were analyzed. The numerical results indicated that the current AASHTO LRFD equation can be used to calculate the flexural strength of composite girders made of HSB600 steel. In contrast, the current AASHTO LRFD equation was found to be non-conservative in its prediction of the flexural strength of composite HSB800 girders. Based on the numerical results of this study for 2,391 girders, a new design equation for the flexural strength of composite HSB800 girders in a positive moment was proposed.

Cross-Sectional Compactness for Negative Moment Region of I-girder with High-Performance Steel (고강도강 적용 I-거더 부모멘트부의 조밀단면 기준 평가)

  • Cha, Sang-Ho;Joo, Hyun-Sung;Choi, Hyung-Ho;Lee, Hak-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.84.2-84.2
    • /
    • 2010
  • 본 연구는 소수주거더 교량에 적용된 I-거더에 고강도 강재인 HSB800 강재를 사용하였을 때, 휨 연성 R값을 이용하여 AASHTO LRFD(2007)의 조밀단면기준에 대한 경향성에 대해 수치해석적으로 수행되었다. 복부판 세장비, 플랜지 세장비, 비지지 길이를 변수로 하여 휨 연성 R값을 구해서 기존의 AASHTO LRFD(2007)의 조밀단면기준에 적용하여 휨 연성에 대한 경향성을 나타내었다.

  • PDF

Reliability Analysis of Composite Girder Designed by LRFD Method for Positive Flexure (하중저항계수설계법(LRFD)으로 설계된 강합성 거더의 휨에 대한 신뢰도해석)

  • Shin, Dong-Ku;Kim, Cheon-Yong;Paik, In-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.539-546
    • /
    • 2006
  • The reliability analysis of simply-supported composite plate girder and box girder bridges under positive flexure is performed. The bridges are designed based on the AASHTO-LRFD specification. A performance function for flexural failure is expressed as a function of such random variables as flexural resistance of composite section and design moments due to permanent load and live load. For the flexural resistance, the statistical parameters obtained by analyzing over 16,000 samples of domestic structural steel products are used. Several different values of statistical parameters with the bias factor in the range of 0.95-1.05 and the coefficient of variation in the range of 0.15-0.25 are used for the live-load moment. Due to the lack of available domestic measured data on the dead load moment, the same values of statistical properties used in the calibration of AASHTO-LRFD are applied. The reliability indices for the composite plate girder and box girder bridges with various span lengths are calculated by applying the Rackwitz-Fiessler technique.

Response Modification Factors and No Collapse Design of Typical Bridges (응답수정계수와 일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.185-189
    • /
    • 2017
  • The purpose of earthquake resistant design for typical bridges is the 'No Collapse Design' allowing emergency vehicles just after earthquakes. The Roadway Bridge Design Code provides design provisions to carry out such 'No Collapse Design' with a ductile mechanism and response modification factors given for connections and substructure play key role in this procedure. In case of response modification factors for substructure, the Roadway Bridge Design Code provides values considering ductility and redundancy. On the other hand, 'AASHTO LRFD Bridge Design Specifications' provides values considering additionally an artificial factor according to the bridge importance categories divided into critical, essential and others. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected and different response modification factors for substructure are applied with design conditions given in the Roadway Bridge Design Code. Based on the comparison study of the design results, supplementary measures are suggested required by applying different response modification factors for substructure.

Application of Load and Resistance Factor Design Format to Designing Flexible Pavements (LRFD 기법을 활용한 연성포장 설계방안에 관한 연구)

  • Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.5 no.1 s.15
    • /
    • pp.1-10
    • /
    • 2003
  • The objective of pavement design, just as with the design of other structures, is to obtain the most economical designs at specified levels of reliability. Methods that yield designs with different levels of reliability are undesirable, and over the course of time design approaches in the U.S. and Europe have converged toward the Load and Resistance Factor Design (LRFD) format in order to assure uniform reliability. At present the LRFD format has been implemented in concrete, steel, wood and bridge design specifications. In this paper, reliability theories are used to illustrate the development of an LRFD format for Mechanistic-Empirical (M-E) design of flexible pavements as an alternative of its reliability module. It is shown in this paper that ten candidate pavement sections designed with a reliability level using the AASHTO design guide (1986) do not have uniform structural reliability in terms of pavement mechanistic distress such as fatigue cracking and the uniform reliability can be achieved by using the LRFD format.

  • PDF

Comparison of Stability Evaluation Methods using ASD and LRFD Codes for Girders and Towers of Steel Cable-Stayed Bridges (사장교 거더와 주탑의 안정성 검토를 위한 ASD와 LRFD 설계법 비교)

  • Choi Dong-Ho;Yoo Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1001-1008
    • /
    • 2006
  • The main objective of this paper is to compare economical effectiveness of typical methods for checking stability in principal components of steel cable-stayed bridges. Elastic and inelastic buckling analyses are carried out for frame-like numerical models of cable-stayed bridges. The axial-flexural interaction equations prescribed in AASHTO Allowable Stress Design (ASD) and AASHTO Load and Resistance Factor Design (LRFD) are used in order to check the stability of principal components. Parametric studies are performed for numerical models which have the center span length of 300m, 600m, 900m and l200m with different girder depths. Peak values of the interaction equations are calculated at the intersection point between girders and towers. These peak values are considered as a major factor to design of principal components of cable-stayed bridges. As a result, more economical design for girders and towers can be feasible using the inelastic buckling analysis. In addition, LRFD codes are more economical about 20% on the average than ASD codes for all numerical models of cable-stayed bridges.

  • PDF