• 제목/요약/키워드: AAPM's TG-51 protocol

검색결과 2건 처리시간 0.019초

고체팬텀을 이용한 국내 방사선 치료시설의 흡수선량에 대한 조사 (External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities)

  • 최창헌;김정인;박종민;박양균;조건우;조운갑;임천일;예성준
    • Radiation Oncology Journal
    • /
    • 제28권1호
    • /
    • pp.50-56
    • /
    • 2010
  • 목 적: 제 3기관에 의해 독립적으로 수행된 방사선 치료 빔의 흡수 선량을 외부 감사의 결과로 보고 한다. 이를 위해 쉽고 편리하게 설치 가능 한 고체 팬텀을 이용하여 흡수 선량을 측정하는 방법을 개발했다. 대상 및 방법: 2008년 12개 방사선 치료 시설에서 외부 감사 프로그램에 참여하였고 47개의 광자선과 전자선의 제 3기관에 의해 American Association of Physicists in Medicine (AAPM) task group (TG)-51 프로토콜을 사용하여 독립적으로 교정되었다. AAPM TG-51 프로토콜은 물에서의 측정을 권고 하고 있지만 팬텀으로 물은 바쁜 병원 상황에선 몇 가지 단점이 있다. 설치와 수송이 편리하고 재현성이 있는 고체 팬텀을 사용하였다. 광자선과 전자선에 대한 물과 고체 팬텀 사이의 선량 보정인자는 스케일링 방법과 실험적 측정에 의해 결정되었다. 결 과: 대부분의 빔은(74%) 제3기관의 프로토콜로 측정한 결과 2%의 편차 이내였다. 그러나 20개 중 2개의 광자선과 27개 중 3개의 전자선은 허용범위(3%)를 초과 하였다. 특히 그중 2개의 빔은 10% 이상의 편차를 보여주고 있다. 6 MV 초과의 고에너지 광자선은 보정인자가 없었다. 6 MV 광자선의 경우 고체 팬텀에서의 흡수선량은 물에서의 흡수 선량보다 0.4% 작게 나타났다. 전자선에 대한 보정인자도 결정되었는데 전자선의 에너지가 증가함에 따라 보정인자는 작아지는 경향을 보여준다. 고체팬텀을 사용한 TG-51 프로토콜의 측정 오차는 ${\pm}1.22%$로 나타났다. 결 론: 개발된 방법은 다기관 임상 연구의 인증 프로그램에 참여할 수 있는 외부 감사 기관 프로그램에 성공적으로 적용되었다. 이 선량측정은 선량을 측정하기 위한 시간을 줄이고 물을 설치할 때의 생길 수 있는 측정오차를 감소시킨다.

Implementation of AAPM's TG-51 Protocol on Co-60 MRI-Guided Radiation Therapy System

  • Cho, Jin Dong;Park, Jong Min;Choi, Chang Heon;Kim, Jung-in;Wu, Hong-Gyun;Park, So-Yeon
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.190-196
    • /
    • 2017
  • For the $ViewRay^{(R)}$ system (ViewRay Inc., Cleveland, OH, USA) which is representative of magnetic resonance (MR) guided radiotherapy machine, it is important to evaluate effectiveness of AAPM's TG-51 protocol and the effect of the magnetic field on absolute dosimetry. In order to measure the absolute dose, MR-compatible chamber and water phantom system manufactured in this study were used. The materials of the water phantom system were plastic of polymethyl methacrylate (PMMA) and non-ferrous materials. Due to the inherent feature of the $ViewRay^{(R)}$, all Co-60 sources are not located at gantry angle of $0^{\circ}$ while being located at gantry angle of $90^{\circ}$. For this reason, absolute dosimetry was performed based on the measurements in solid water phantom (SWP) and water which determine the SWP to water correction factor. For evaluation of output constancy with gantry angle, measurements were made with ionization chamber inserted in cylindrical water-equivalent phantom. For measured doses in water, the values of dose deviation according to a reference dose of 200 cGy for Head 1, Head 2 and Head 3 were -0.27%, -0.45% and -0.22%, respectively. For measured doses in SWP, the values of dose deviation according to a reference dose of 200 cGy for Head 1, Head 2 and Head 3 were -1.91%, -2.07% and -1.84%, respectively. All values of dose measured in SWP tended to be less than those measured in water by -1.63%. With the reference gantry angles of $0^{\circ}$ and $90^{\circ}$, the maximum values of deviation for Head 1, Head 2 and Head 3 were 0.48%, 1.06% and 0.40%, respectively. The measurement agreement is within the range of results obtainable for conventional treatment machines. The low strength of the magnetic field does not affect dose measurements. Using the SWP to water correction factor, absolute doses for $ViewRay^{(R)}$ system can be measured.