• Title/Summary/Keyword: AAOS

Search Result 12, Processing Time 0.023 seconds

Improving soil moisture accuracy in ungauged areas using Multi-Satellite data (다종위성에 근거한 미계측 지역의 토양수분 정확도 향상에 관한 연구)

  • Doyoung Kim;Hyunho Jeon;Seulchan Lee;Minha Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.433-433
    • /
    • 2023
  • 토양수분은 물 순환의 필수적인 요소로써 수문순환 및 기상 현상에 큰 영향을 미친다. 현재 우리나라에서는 토양수분 자료구축을 위해 Frequency Domain Reflectometry (FDR), Time Domain Reflectometry (TDR) 센서를 활용하여 지점 단위 토양수분 자료를 생산하고 있다. 그러나 한반도는 도서, 산간 지역이 다수 분포하고 있어, 지점관측 센서만으로 공간 대표성을 갖는 토양수분 자료를 산출하기 어렵다. 이에, 광범위한 지역을 장기간 모니터링 할 수 있는 원격탐사 기법을 활용하여, Advanced SCATterometer (ASCAT), Soil Moisture Active and Passive (SMAP) 등의 공간 단위 토양수분 자료의 적용성이 평가되고 있다. 하지만, 공간 토양수분 자료의 검증을 위해 필수적인 지점 토양수분 자료가 구축되지 않은 미계측지역이 다수 존재하며, 한반도와 같이 지형적 복잡성이 높게 나타나는 지역에서는 계측지역에서의 활용성 평가 결과가 미계측지역에서도 유사하게 나타난다고 가정하기 어렵다. 이에 본 연구에서는, 미계측지역의 공간 토양수분 자료를 산출하고자 계측지역에서 SM2RAIN 알고리즘으로 산출된 강수량 자료와 위성 산출 자료 그리고 지점관측 자료의 관계성을 분석했다. SM2RAIN 알고리즘의 입력자료는 Advanced SCATterometer (ASCAT) 토양수분 자료를 활용했다. ASCAT 토양수분 자료와 SM2RAIN 강수 자료의 검증을 위해 기상청에서 제공하는 Automated Agriculture Observing System (AAOS) 토양수분 자료, Automatic Weather System (AWS) 강수량 자료와 Global Precipitation Measurement (GPM) 강수 자료를 활용하였다. 전반적으로 ASCAT 토양수분을 통해 산출한 SM2RAIN 강수량의 추정과GPM 강수량이 유의미한 상관성이 나타나는 것을 확인할 수 있었으며, 추후 Downscaling 기법과 연계하여 지형적 복잡성이 높게 나타나는 지역의 토양수분 추정이 가능할 것으로 기대된다.

  • PDF

Development of Correction Formulas for KMA AAOS Soil Moisture Observation Data (기상청 농업기상관측망 토양수분 관측자료 보정식 개발)

  • Choi, Sung-Won;Park, Juhan;Kang, Minseok;Kim, Jongho;Sohn, Seungwon;Cho, Sungsik;Chun, Hyenchung;Jung, Ki-Yuol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.1
    • /
    • pp.13-34
    • /
    • 2022
  • Soil moisture data have been collected at 11 agrometeorological stations operated by The Korea Meteorological Administration (KMA). This study aimed to verify the accuracy of soil moisture data of KMA and develop a correction formula to be applied to improve their quality. The soil of the observation field was sampled to analyze its physical properties that affect soil water content. Soil texture was classified to be sandy loam and loamy sand at most sites. The bulk density of the soil samples was about 1.5 g/cm3 on average. The content of silt and clay was also closely related to bulk density and water holding capacity. The EnviroSCAN model, which was used as a reference sensor, was calibrated using the self-manufactured "reference soil moisture observation system". Comparison between the calibrated reference sensor and the field sensor of KMA was conducted at least three times at each of the 11 sites. Overall, the trend of fluctuations over time in the measured values of the two sensors appeared similar. Still, there were sites where the latter had relatively lower soil moisture values than the former. A linear correction formula was derived for each site and depth using the range and average of the observed data for the given period. This correction formula resulted in an improvement in agreement between sensor values at the Suwon site. In addition, the detailed approach was developed to estimate the correction value for the period in which a correction formula was not calculated. In summary, the correction of soil moisture data at a regular time interval, e.g., twice a year, would be recommended for all observation sites to improve the quality of soil moisture observation data.