Recent natural disasters like flooding and slope collapse have shown the need for natural risk management system, as they endanger directly public health and cause severe damages on the national economy. In order to improve the efficiency of risk management systems, this management system based on AANN(Auto-Associative Neural Network)is proposed in this paper. AANN can be effectively used for identification of abnormal data and data compression. The proposed AANN-based risk management system collects and stores measurement data from sensors and transmits them to remote server for web-monitoring. Generally, it is desirable to transmit the compressed data instead of raw data in normal state. However, if dangerous situation happens, rapid tramission of measurement data should be required. These requirements are easily satisfied by using AANN. In order to verify the feasibilities of the proposed system, The AANN-based risk management system is applied to slope collapse monitoring system.
NLPCA(Nonlinear Principal Component Analysis) is a novel technique for multivariate data analysis, similar to the well-known method of principal component analysis. NLPCA operates by a feedforward neural network called AANN(Auto Associative Neural Network) which performs the identity mapping. In this work, a sensor fault detection system based on NLPCA is presented. To verify its applicability, simulation study on the data supplied from sensor network is executed.
비선형 주성분 분석은 기존에 널리 알려져 있는 주성분 분석기법과 유사한 다변수 데이터 분석을 위한 새로운 접근 방법이다. 비선형 주성분 분석은 AANN(Auto Associative Neural Network)으로 PCA와 마찬가지로 변수들 간에 존재하는 상관관계를 제거함으로써 고차의 다변수 데이터를 정보의 손실을 최소화하면서 최소 차원의 데이터로 변환하는 기법이다. AANN 기반 센서노드 고장검출 기법을 실제 센서 네트워크에 적용하여 봄으로써 센서 드리프트 등과 같은 센서 고장의 검출 및 유효한 센서 보정 성능을 확인하였다.
비선형 주성분 분석은 기존에 널리 알려져 있는 주성분 분석기법과 유사한 다변수 데이터 분석을 위한 새로운 접근 방법이다. 비선형 주성분 분석은 AANN(Auto Associative Neural Network)으로 PCA와 마찬가지로 변수들 간에 존재하는 상관관계를 제거함으로써 고차의 다변수 데이터를 정보의 손실을 최소화하면서 최소 차원의 데이터로 변환하는 기법이다. AANN기반 센서 고장 검출 기법을 실제 방재시스템에 적용하여 봄으로써 센서 드리프트 등과 같은 센서 고장의 검출 및 유효한 센서 보정 성능을 확인하였다.
NLPCA(Nonlinear principal component analysis is a novel technique for multivariate data analysis, similar to the weil-known method of principal component analysis. NLPCA operates by a feedforward neural network called AANN(AutoAssociative Neural Network) which performs the identity mapping. In this work, a sensor fault defection system based on NLPCA is presented. To verify its applicability, simulation study on the data supplied from Saemangeum measurement stations is executed.
Sensor networks are usually composed of tens or thousands of tiny devices with limited resources. Because of their limited resources, many researchers have studied on the energy management in the WSNs(Wireless Sensor Networks), especially taking into account communications efficiency. For effective data transmission and sensor fault detection in sensor network environment, a new remote monitoring system based on PCA(Principle Component Analysis) and AANN(Auto Associative Neural Network) is proposed. PCA and AANN have emerged as a useful tool for data compression and identification of abnormal data. Proposed system can be effectively applied to sensor network working in LEA2C(Low Energy Adaptive Connectionist Clustering) routing algorithms. To verify its applicability, some simulation studies on the data obtained from real WSNs are executed.
Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
Nuclear Engineering and Technology
/
제42권2호
/
pp.219-230
/
2010
In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.
NLPCA(Nonlinear Principal Component Analysis is a novel technique for multivariate data analysis, similar to the well-known method of principal component analysis. NLPCA can be implemented by a feedforward neural network called AANN (AutoAssociative Neural Network) which performs the identity mapping. In this work, a sensor fault detection system based on NLPCA and Maximum Likelihood Estimation scheme is presented. To verify its applicability, simulation study on the data supplied from Saemangeum measurement stations is executed.
Purpose: This study was done to develop an evidence-based external ventricular drainage (EVD) nursing practice guideline in order to provide standardized nursing and prevent EVD related complications. Methods: We used the standardized methodology for nursing practice guideline adaptation developed by Korean Hospital Nurses Association for the guideline adaptation process in this study. Results: The newly developed EVD nursing practice guideline was adapted to the American Association of Neuroscience Nurses (AANN)'s clinical practice guideline which is 'Care of the patient undergoing intra-cranial pressure monitoring/external ventricular drainage of lumbar drainage.' There were 61 recommendations documented in the preliminary guideline all evaluated by 9 experts based on acceptability and applicability. The final practice guideline was composed of 3 domains with 57 recommendations. The three domains of nursing were the insertion, maintenance, and removal of the EVD. The number of recommendations in each domain was 8 in EVD insertions, 39 in EVD maintenance, and 10 in EVD removals. Of the 57 recommendations 3.5% were level 1, 31.5% were level 2, and 65% were level 3. Conclusion: The standardized practice guideline can improve nurses' performance and accuracy. It can also be used as the foundation for effective communication between all medical staff.
목적: 본 연구의 목적은 미국 아이오와 대학에서 개발된 Nursing Interventions Classification (NIC)을 사용하여 신경기계 병동과 정형외과 병동에 근무하는 간호사들이 가장 빈번히 수행하는 간호중재를 파악함으로서 이러한 부서의 간호중재 리스트를 개발하는데 있다. 그리고 확인된 간호중재의 리스트를 미국 간호협회의 핵심 간호중재 목록과 비교함으로써 양국간의 간호중재의 유사성과 차이를 비교함으로써 한국간호의 발전을 도모하는데 있다. 방법: 8개의3차병원 및 종합병원 근무하는 간호사에게 NIC을 번역하여 소개한 뒤 가장 자주 수행하는 간호중재 30개를 선택하게 하였다. 선택된 간호중재는 빈도와 백분율 이용하여 분석하였고 미국의 핵심간호 중재목록과 영역(domain)별, 분류군 (class)별로 비교하였다. 결과: 신경기계 병동은 30개의 간호중재를 정형외과 병동은 34개를 핵심간호중재로 확인하였다. 한국과 미국의 간호중재를 비교해본 결과 신경기계 병동의 간호중재와 미국American Association of Neuroscience Nurses (AANN) 의 핵심간호중재 목록과는 단지 5개의 간호중재가 일치하였지만 정형외과 병동의 간호중재목록은 미국의 National Association of orthopaedic Nurses (NAON) 의 핵심중재목록과 27개의 간호중재가 일치되어 더 많은 유사성을 나타내었다. 두 나라의 간호중재를 영역(domain)별로 비교해보면 한국 간호사의 간호중재는 미국간호단체의 핵심간호 중재 목록보다 신체적 간호에 보다 많은 편중을 보였다. 결론: 한국간호사의 간호중재가 신체적 간호중재에 집중되어 있으므로 환자간호에 보다 전인적인 간호중재가 수행될 수 있도록 노력해야 할 것이다. 그리고 본 연구를 통해 개발된 핵심 간호중재 목록은 병원의 간호정보시스템을 개발하는데 사용될 수 있으며, 간호지식의 확장이나 staffing, 간호 수가화, 그리고 궁극적으로는 간호의 효과성 연구를 자극할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.