• Title/Summary/Keyword: AA release

Search Result 67, Processing Time 0.026 seconds

Effects of Chemical Anoxia Inducers on Cellular Functions of Cultured Rat Cortical Astrocytes (배양된 흰쥐 대뇌 피질 astrocytes의 세포기능에 대한 화학적 무산소증 유도물의 효과)

  • 이선애;박우규;성연희
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.851-860
    • /
    • 1999
  • The effects of antimycin A(AA), dodium azide ($NaN_3$) and 2,4-dinitrophenol (DNP), which inhibit mitochondrial ATP production, on cellular functions of cultured astrocytes were studied. High concentrations of AA $(50{\;}\mu\textrm{g}/ml),{\;}NaN_3$ (100mM) and DNP (20mM) significantly decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction, which was known to be related to mitochondrial function and then cel viability. AA ($50{\;}\mu\textrm{g}/ml$) increased lactate dehydrogenase (LDH) release and decreased [$^3H$] glutamate uptake, suggesting severe damage of cellular function by the concentrations of the compounds. Meanwhile, low concentrations of AA $(\leq{;\}10{\;}\mu\textrm{g}/ml),{\;}NaN_3{;\}(\leq{\;}50mM)$ and DNP ($\leq{\;}5mM$) significantly increased MTT reduction, the effect of which was specific to astrocytes. AA (5 and $10{\;}\mu\textrm{g}/ml$) did not affect LDH release and [$^3H$] glutamate uptake, indicating that these compounds increased MTT reduction at the low concentrations without cellular membrane damage. However, the low concentrations of AA produced significant decrease of MTT reduction in a glucose-free medium. Low concentrations of AA (1 and $5{\;}\mu\textrm{g}/ml$) did not change ATP production of astrocytes in the medium containing 10 mM glucose, but completely inhibited in a glucose-free medium, suggesting marked increase of cytosolic ATP production by the blockade of mitochondrial ATP production with low concentrations of AA. These results suggest that astrocytes have ability to enhance neuronal function or survival under conditions of incomplete ischemia or early by enhancement of glycolysis, and that cellular reduction of MTT occurs not only mitochondrially but also extramitchondrially.

  • PDF

lntracellular $Ca^{2+}$ Mediates Lipoxygenase-induced Proliferation of U-373 MG Human Astrocytoma Cells

  • Kim, Jung-Ae;Chung, Young-Ja;Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.664-670
    • /
    • 1998
  • The role of intracellular $Ca^{2+}$, in the regulation of tumor cell proliferation by products of arachidonic acid (AA) metabolism was investigated using U-373 MG human as trocytoma cells. Treatment with nordihydroguaiaretic acid (NDGA), a lipoxygenase (LOX) inhibitor, or caffeic acid (CA), a specific 5-LOX inhibitor, suppressed proliferation of the tumor cells in a dose-dependent manner. However, indomethacin (indo), a cyclooxygenase (COX) inhibitor, did not significantly alter proliferation of the tumor cells. At anti-proliferative concentrations, NDGA and CA significantly inhibited intracellular $Ca^{2+}$ release induced by carbachol, a known intracelluar $Ca^{2+}$ agonist in the tumor cells. Exogenous administration of leukotriene $B_4(LTB_4)$, an AA metabolite of LOX pathway, enhanced proliferation of the tumor cells in a concentration-dependent fashion. In addition, $LTB_4$, induced intracelluar $Ca^{2+}$ release. Intracellular $Ca^{2+}$-inhibitors, such as an intracellular $Ca^{2+}$ chelator (BAPTA) and intracellular $Ca^{2+}$-release inhibitors (dantrolene and TMB-8), significantly blocked the LTB4-induced enhancement of cell proliferation and intracellular $Ca^{2+}$ release. These results suggest that LOX activity may be critical for cell proliferation of the human astrocytoma cells and that intracelluar $Ca^{2+}$ may play a major role in the mechanism of action of LOX.

  • PDF

Hydrolysis of Phosphatidyicholine to Initiate HeLa Cell Adhesion to a Gelatin Substratum (Phosphatidylcholine의 분해에 의한 Hela 세포와 Gelatin 기질과의 상호작용의 유도)

  • ;;;;;Bruce S. Jacobson
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.457-464
    • /
    • 1995
  • Hela cells, a transformed human epithelial cell line, attach to various substrata but subsequent spreading is specific to collagen or gelatin. The spreading is initiated by the activation of phospholipase $A_2$ (PLA$_2$) which produces arachidonic acid (AA) as a consequence of cell surface collagen receptor clustering. This study examines the mechanism of PLA$_2$activation and which phospholipids are hydrolyzed by PIA$_2$ to release AA in response to Hela cell adhesion to a gelatin substratum. The levels of phosphatidyicholine decreases, among various phospholipids, during attachment and spreading of Hela cells. Lysophosphatidyicholine Is the only lysophospholipids formed during ileLa cell adhesion indicating that clustered collagen receptors activate PLA$_2$to hydrolyze posphatidylcholine to AA and lysophosphatidylcholine. Among various molecular entitles which are known to regulate PLA$_2$ activation, we have previously shown that PLA2 activation is not mediated by either changes in $Ca_2$+ levels, alkalinization of cytoplasmic p11, or activation of protein hinase C. It is also likely that PIA2 activation is not mediated by either pertussis or cholera toxinsensitive G proteins as those toxins do not affect both AA release and cell spreading.

  • PDF

Role of Phospholipase $A_2$ in Hypoxia-Induced Renal Cell Injury

  • Choi, Won-Rak;Ko, Sun-Hee;Cho, Su-In;Woo, Jae-Suk;Jung, Jin-Sup;Lee, Sang-Ho;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.93-100
    • /
    • 1999
  • The present study was designed to assess the roles of $PLA_2$ activation and arachidonic acid (AA) metabolites in hypoxia-induced renal cell injury. Hypoxia increased LDH release in a dose-dependent manner in rabbit renal cortical slices, and this increase was significant after 20-min hypoxia. The hypoxia-induced LDH release was prevented by amino acids, glycine and alanine, and extracellular acidosis (pH 6.0). Buffering intracellular $Ca^{2+}$ by a chelator, but not omission of $Ca^{2+}$ in the medium produced a significant reduction in hypoxia-induced LDH release. The effect of hypoxia was blocked by $PLA_2$ inhibitors, mepacrine, butacaine, and dibucaine. A similar effect was observed by a 85-kD $cPLA_2$ inhibitor $AACOCF_3.$ AA increased hypoxia-induced LDH release, and albumin, a fatty acid absorbent, prevented the LDH release, suggesting that free fatty acids are involved in hypoxia-induced cell injury. These results suggest that $PLA_2$ activation and its metabolic products play important roles in pathogenesis of hypoxia-induced cell injury in rabbit renal cortical slices.

  • PDF

D609, an Inhibitor of Phosphatidylcholine-specific Phospholipase C, Inhibits Group IV Cytosolic Phospholipase A2

  • Kang, Mi Sun;Jung, Sung Yun;Jung, Kwang Mook;Kim, Seok Kyun;Ahn, Kyong Hoon;Kim, Dae Kyong
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.481-485
    • /
    • 2008
  • As an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 has been widely used to explain the role of PC-PLC in various signal transduction pathways. This study shows that D609 inhibits group IV cytosolic phospholipase $A_2$ ($cPLA_2$), but neither secretory $PLA_2$ nor a $Ca^{2+}$-dependent $PLA_2$. Dixon plot analysis shows a mixed pattern of noncompetitive and uncompetitive inhibition with $K_i=86.25{\mu}M$ for the $cPLA_2$ purified from bovine spleen. D609 also time- and dose-dependently reduces the release of arachidonic acid from a $Ca^{2+}$- ionophore A23187-stimulated MDCK cells. In the AA release experiment, $IC_{50}$ of D609 was ${\sim375}{\mu}M$, suggesting that this reagent may not enter the cells easily. The present study indicates that the inhibitory effects of D609 on various cellular responses may be partially attributable to the inhibition of $cPLA_2$.

Mediation of Intracellular $Ca^{2+}$ in the Phospholipase $A_2-induced$ Cell Proliferation in Human Neuroblastoma Cells

  • Kim, Jung-Ae;Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.411-417
    • /
    • 1998
  • The role of phospholipase ($A_2\;PLA_2$) in tumor cell growth was investigated using SK-N-MC human neuroblastoma cells. 4-Bromophenacyl bromide (BPB) and mepacrine (Mep), known $PLA_2$ inhibitors, suppressed growth of the tumor cells in a dose-dependent manner without a significant cytotoxicity. Melittin (Mel), a $PLA_2$ activator, enhanced the cell growth in a concentration-dependent fashion. The growth-enhancing effects of Mel were significantly reversed by the co-treatment with $PLA_2$ inhibitors. In addition, Mel induced intracellular $Ca^{2+}$ release from internal stores like as did serum, a known intracellular $Ca^{2+}$ agonist in the tumor cells. Intracellular $Ca^{2+}$ release induced by these agonists was significantly blocked by $PLA_2$ inhibitors at growth-inhibitory concentrations. Arachidonic acid (AA), a product of the $PLA_2-catalyzed$ reaction, induced cell growth enhancement and intracellular $Ca^{2+}$ release. These effects of AA were significantly blocked by BAPTA/AM, an intracellular $Ca^{2+}$ chelator. Taken together, these results suggest that the modulation of $PLA_2$ activity may be one of the regulatory mechanisms of cell growth in human neuroblastoma cells. Intracellular $Ca^{2+}$ may act as a key mediator in the $PLA_2-induced$ growth regulation.

  • PDF

Antiplatelet Actions of 2-Bromo-3-(.3,5-tert-butyl-4-hydroxylphenyl)-1,4-naphthaleneflione (TPN2) (2-Bromo-3-(3,5-tert-butyl-4-hydroxylphenyl)-1,4-naphthalenedione (TPN2)의 항혈소판 작용)

  • 최소연;김민화;이수환;정이숙;백은주;유충규;문창현
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.227-233
    • /
    • 1999
  • The effects of 2-bromo-3-(3,5-tert-butyl-4-hydroxylphenyl)-1,4-naphthalenedione(TPN2), a synthetic vitamin K derivative, on platelet aggregation and its action mechanisms were investigated in rat platelet. TPN2 inhibited the platelet aggregation induced by collagen($10\mu\textrm{g}$/ml), thrombin(0.1 U/ml), A23187($10\mu\textrm{M}$) and arachidonic acid($100\mu\textrm{M}$) in concentration-dependent manner with $IC_{50}$ values of 6.5$\pm$1.3, 59.3$\pm$4.5, 13.0$\pm$2.37 and 2.9$\pm$$1.0\mu\textrm{M}$, respectively. Collagen-induced serotonin release was significantly reduced by TPN2. The elevation of intracellular free $Ca^{2+}$ concentration ([$Ca^{2+}$]i) by collagen stimulation was greatly decreased by the pretreatment of TPN2, which was due to the inhibition of calcium release from intracellular store and influx from outside of the cell. TPN2 also significantly reduced the thromboxane $A_2$($TXA_2$) formation in a concentration-dependent manner. The collagen-induced arachidonic acid (AA) release in [$^3H$]-AA incorporated platelet, an indicative of the phospholipase $A_2$ activity, was decreased by TPN2 pretreatment. TPN2 significantly inhibited the activity of thromboxane synthase, but did not affect the cyclooxygenase activity. From these results. it is suggested that TPN2 exert its antiplatelet activity through the inhibition of the intra-cellular $Ca^{2+}$ mobilization and the decrease of the $TXA_2$ synthesis.

  • PDF

The Roles of Arachidonic Acid and Calcium in the Angiotensin II-induced Inhibition of $Na^+$ Uptake in Renal Proximal Tubule Cells

  • Park, Soo-Hyun;Koh, Hyun-Joo;Lee, Yeun-Hee;Son, Chang-Ho;Park, Min-Kyoung;Lee, Young-Jae;Han, Ho-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.83-91
    • /
    • 1999
  • Angiotensin II (ANG II) has a biphasic effect on $Na^+$ transport in proximal tubule: low doses of ANG II increase the $Na^+$ transport, whereas high doses of ANG II inhibit it. However, the mechanisms of high dose ANG II-induced inhibition on $Na^+$ uptake are poorly understood. Thus the aim of the present study was to investigate signal transduction pathways involved in the ANG II-induced inhibition of $Na^+$ uptake in the primary cultured rabbit renal proximal tubule cells (PTCs) in hormonally defined serum-free medium. ANG II $(10^{-9}\;M)-induced$ inhibition of $Na^+$ uptake was blocked by losartan $(10^{-8}\;M,\;AT_1\;antagonist),$ but not by PD123319 $(10^{-8}\;M,\;AT_2\;antagonist)$ (P<0.05). ANG II-induced inhibition of $Na^+$ uptake was also completely abolished by neomycin $(10^{-4}\;M,$ PLC inhibitor), W-7 $(10^{-4}\;M,$ calmodulin antagonist), and $AACOCF_3\;(10^{-6}\;M,\;PLA_2\;inhibitor)$ (P<0.05). ANG II significantly increased $[^3H]arachidonic$ acid (AA) release compared to control. The ANG II-induced $[^3H]AA$ release was blocked by losartan, $AACOCF_3,$ neomycin, and W-7, but not by PD123319. ANG II-induced $[^3H]AA$ release in the presence of extracellular $Ca^{2+}$ was greater than in $Ca^{2+}-free$ medium, and it was partially blocked by TMB-8 $(10^{-4}\;M,$ intracelluar $Ca^{2+}$ mobilization blocker). However, in the absence of extracellular $Ca^{2+},$ it was completely blocked by TMB-8. In addition, econazole $(10^{-6}\;M,$ cytochrome P-450 monooxygenase inhibitor) and indomethacin $(10^{-6}\;M,$ cyclooxygenase inhibitor) blocked ANG II-induced inhibition of $Na^+$ uptake, but NGDA $(10^{-6}\;M,$ lipoxygenase inhibitor) did not affect it. In conclusion, $PLA_2-mediated$ AA release is involved in ANG II-induced inhibition of $Na^+$ uptake and is modulated by $[Ca^{2+}]_i$ in the PTCs.

  • PDF

Transport Characteristics and Screening of Penetration Enhancer through Buccal Mucosa of Butorphanol Tartrate from [P(AA-co-PEGMM)] Copolymer Films ([P(AA-co-PEGMM)] 공중합체 필름으로부터 Butorphanol Tartrate의 구강점막 투과 특성 및 투과촉진제의 검색)

  • Kim, Joun-Sik;Park, Jeong-Sook;Jeong, Yeon-Bok;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.3
    • /
    • pp.157-162
    • /
    • 2003
  • The feasibility of [P(AA-co-PEGMM)] film as a buccal mucoadhesive patch was previously reported by estimating mucoadhesiveness and release characteristics. To find a rational penetration enhancer of [P(AA-co-PEGMM)] film containing butorphanol tartrate (Bt), penetration of Bt from [P(AA-co-PEGMM)] film which contained various additives was estimated by measuring its flux, Papp and lag tme in in vitro buccal membrane of porcine. EDTA showed almost no increase of Bt permeability, wherease SGC, STDHF and SLS increased the permeability of Bt with the order of SGC > STDHF > SLS. The rational additive concentration of SGC was 4% and its Papp and lag time were $1.93{\times}10^{-4}{\pm}4.21{\times}10^{-6},\;126.60{\pm}21.88min\;(control\;:\;Papp\;0.45{\times}10^{-4};\;lag\;time\;211.01{\pm}16.77\;min)$, respectively.

L-ascorbic acid induces apoptosis in human laryngeal epidermoid Hep-2 cells by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase/Akt signaling pathway

  • Park, Jung-Sun;Kim, Yoon-Jung;Park, Sam Young;Chung, Kyung-Yi;Oh, Sang-Jin;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.169-178
    • /
    • 2020
  • L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl-2 family and MAPK/Akt signaling pathways.