• 제목/요약/키워드: A6061 alloy

검색결과 203건 처리시간 0.022초

나노 다이아몬드 입자를 첨가한 엔진 오일의 알루미늄 6061 합금에 대한 마모 특성 (Wear Characteristics of Lubricant with Nano-diamond Particles on Al-6061 Aluminum Alloy)

  • 황성완
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.16-23
    • /
    • 2021
  • Pin-to-disc wear testing experiments were conducted to investigate the wear characteristics of commercial oil (5W-40) with nano-diamond particles. The upper specimen was a SUJ-2 high-carbon chromium steel ball with a diameter of 4 mm, and the lower specimen was made of the Al-6061 alloy. The applied load was 5 N, and the sliding speed was 0.25 m/s. The wear tests were conducted at a sliding distance of 500 m. The friction coefficients and wear rates of the Al-6061 specimens were tested using commercial oil with different nano-diamond concentrations ranging from 0 to 0.02 wt.%. The addition of nano-diamond particles to commercial oil reduced both the wear rate and coefficient of friction of the Al-6061 alloy. The use of nano-diamond particles as a solid additive in oil lubricants was found to improve the tribological behavior of the Al-6061 alloy. For the Al-6061 alloy, the optimal concentration was found to be 0.005 wt.% in view of the friction coefficient and wear rate. Further investigation is needed to determine the optimal concentration of nano-diamond particles for various loadings, sliding speeds, oil temperatures, and sliding distances.

6061 알루미늄 합금 Nd:YAG 레이저 용접부의 기계적 성질에 관한 연구 (Study on the mechanical properties of Nd:YAC laser welded 6061 aluminum alloy)

  • 윤종원;이윤상;이문용;정병훈
    • 한국레이저가공학회지
    • /
    • 제6권2호
    • /
    • pp.19-26
    • /
    • 2003
  • 6061 aluminum alloy sheets were I-square butt welded using a continuous wave Nd:YAC laser. Heat inputs were varied from 54.6 to 80 J/mm for butt welding using different sets of the laser power and the weld speed. I-square butt welds were also made with and without Ar shielding gas. The effect of Ar shielding gas and heat input on the mechanical properties and formability was investigated using Vickers hardness, transverse-weld tensile and bulge test. Porosity on the weld beads and sections and hot crack on the fracture surfaces of transverse-weld tensile test specimens were investigated using optical and scanning electron microscopy The experimental results showed that mechanical properties and formability of 6061 aluminum alloy laser welds were degraded compared to those of base metal. Mechanical properties and formability of 6061 aluminum alloy laser welds were not substantially changed when Ar shielding gas was supplied or heat inputs were varied.

  • PDF

누적압연접합에 의한 6061 Al 합금의 결정립 미세화와 마멸 특성 연구 (An Investigation of Sliding Wear and Microstructural Evolution of Ultra-Eine Grained 6061 Al Alloy Fabricated by ARB)

  • 이태오;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.147-150
    • /
    • 2001
  • The ARB (Accumulative Rolling Bonding) Process was applied to a 6061 Al alloy to obtain ultra-fine grains. After 4 ARB cycles at $315^{\circ}C$, original equilibrium large grains were transformed to ultra-fine grains of several hundred nano-meter size with nonequilibrium grain boundaries. At lower number of cycles, microsutcture of highly-tangled dislocation cells were observed. Large grains and coarsened precipitates filled the microstructure of specimens experienced ARB cycles more than 5. Sliding wear tests using a pin-on-disk type wear tester were conducted on the ARB processed 6061 Al alloy plate. Wear rates of the 6061 Al alloy increased with the increase of ARB cycle number as well as the applied load. Worn surfaces and debris, cross-sections of the worn specimen were examined with scanning electron microscopy (SEM) to investigate the wear mechanism of the ultra-fine grained 6061 Al Tensile properties of the 6061 Al alloy were also studied and used to correlate the wear test results with the microstructures, which evolved continuously with the number of ARB cycles.

  • PDF

A 6061 합금의 기계적 특성에 미치는 2단시효의 영향 (Effects of Two-Step Aging Treatment on the Mechanical Properties of 6061 Al Alloy)

  • 이보배;임항준;정걸채
    • 열처리공학회지
    • /
    • 제32권2호
    • /
    • pp.57-60
    • /
    • 2019
  • The impact of two-step treatment on the mechanical properties of the 6061 Al alloy was investigated by testing the hardness and electrical conductance values. After two-step aging treatment, the hardness and electrical conductivity of the alloy was increased, and if the first aging treatment temperature was lower than the secondary aging treatment temperature, both the hardness and the electrical conductivity were not increased. The higher the temperature of the first aging treatment, the higher the hardness. The temperature of the first aging treatment is $175^{\circ}C$, $150^{\circ}C$, $120^{\circ}C$, and the second is $175^{\circ}C$ and $120^{\circ}C$.

누적압연접합 공정에 의해 제조된 초미세립 6061 Al 합금의 열적 안정성과 건식 미끄럼 마멸 거동 (Thermal Stability and Dry Sliding Wear Behavior of Ultra-Fine Grained 6061 Al Alloy Processed by the Accumulative Roll-Bonding Process)

  • 김용석
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.71-77
    • /
    • 2005
  • Thermal stability and dry sliding wear behavior of ultra-fine grained 6061 Al alloy fabricated by an accumulative roll-bonding (ARB) process have been investigated. After 4 ARB cycles, an ultra-fine grained microstructure of the 6061 Al alloy composed of grains with average size of 500nm, and separated mostly by high-angle boundaries was obtained. Though hardness and tensile strength of the ARB processed Al alloy increased with ARB cycles up to 4 cycles, the processed alloy exhibited decreased ductility and little strain hardening. Thermal stability of the ARB-processed microstructure was studied by annealing of the severely deformed alloy at $423K{\sim}573K$. The refined microstructure of the alloy remained stable up to 473K, and the peak aging treatment of the alloy at 450K for 8 hrs increased the thermal stability of the alloy. Sliding-wear rates of the alloy increased with the number of ARB cycles in spite of the increased hardness with the cycles. Wear mechanisms of the ultra-fine grained alloy were investigated by examining worn surfaces, wear debris, and cross-sections by a scanning electron microscopy (SEM).

알루미나입자로 강화된 알루미늄합금 복합재료의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Aluminum Alloy Composites Strengthened with Alumina Particles)

  • 오창섭;한창석
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.199-205
    • /
    • 2013
  • The mechanical properties and microstructures of aluminum-matrix composites fabricated by the dispersion of fine alumina particles less than $20{\mu}m$ in size into 6061 aluminum alloys are investigated in this study. In the as-quenched state, the yield stress of the composite is 40~85 MPa higher than that of the 6061 alloy. This difference is attributed to the high density of dislocations within the matrix introduced due to the difference in the thermal expansion coefficients between the matrix and the reinforcement. The difference in the yield stress between the composite and the 6061 alloy decreases with the aging time and the age-hardening curves of both materials show a similar trend. At room temperature, the strain-hardening rate of the composite is higher than that of the 6061 alloy, most likely because the distribution of reinforcements enhances the dislocation density during deformation. Both the yield stress and the strain-hardening rate of the T6-treated composite decrease as the testing temperature increases, and the rate of decrease is faster in the composite than in the 6061 alloy. Under creep conditions, the stress exponents of the T6-treated composite vary from 8.3 at 473 K to 4.8 at 623 K. These exponents are larger than those of the 6061 matrix alloy.

볼트 균열 홀을 갖는 알루미늄 6061-T6 합금의 패치 본딩 보수/보강 부위에 대한 파괴역학적 해석에 관한 연구 (The failure analysis of patch bonded repair on Al 6061-T6 alloy structures with cracked bolt hole)

  • 윤영기;김국기;박종준;윤희석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.148-152
    • /
    • 2000
  • The aluminum alloy 6061-T6 has been successfully used in structural applications especially the pressure vessel of the Advanced Neutron Source research reactor. And aluminum alloys, including 6061-T6, have a face-centered-cubic crystals structure. Under normal circumstances face-centered-cubic crystal structures do not exhibit cleavage fractures even at very lo9w temperatures. In aluminum-based structures, plates frequently find use as connecting links. Mechanical fasteners are often utilized in instances where ease of application, familiarity with fabrication processes, and severe dynamic loading are of concern. Plates frequently find use as connecting elements in structures built from aluminum alloys. Many structural elements employ mechanical fasteners. Twenty and twenty aluminum alloy 6061-T6 plates, representing four different bolt patterns, were mechanically deformed. And variable materials such as A1 6061-T6, Al 2024-T3, Carbon/Epoxy, Glass/Epoxy Composite and Woven fiber composite, are used as patch materials. From this experiment, it has been shown that the strength of patch-repaired specimens is different with the patch materials.

  • PDF

Al 6061-T6 합금의 MIG 용접 후 열처리조건에 따른 미세조직 및 기계적 물성 분석 (Analysis of Microstructure and Mechanical Properties According to Heat Treatment Conditions in GMAW for Al 6061-T6 Alloy)

  • 김찬규;조영태;정윤교;강신현
    • Journal of Welding and Joining
    • /
    • 제34권4호
    • /
    • pp.34-39
    • /
    • 2016
  • Recently, aluminum alloy has used various industry, such as automobile, shipbuilding and aircraft because of characteristics of low density and high corrosion resistance. Al 6061-T6 is heat treatment materials so it has high strength and mostly used for assembly by mechanical fastening such as a bolting and riveting. In GMA (Gas Metal Arc) welding of alloy, some defects which are hot cracking, porosity, low-mechanical properties and large heat affected zone is generated, because of high heat conductivity. It reduces mechanical properties. In this study, the major factor effected on properties are analyzed after welding in Al 6061-T6 in GMAW, then optimize heat treatment conditions. Plate of Al 6061-T6 with a thickness of 12 mm is welded in V groove and applied welding method is butt joint. Mechanical properties and microstructure are analyzed according to heat treatment condition. Tensile strength, microstructure and Hardness are evaluated. Result of research appears that Al 6061-T6 applied heat treatment show outstanding mechanical properties.

Al 6061 합금의 마찰교반접합시 접합부의 역학적 특성에 관한 연구 (A Study on the Mechanical Characteristic in Al 6061 Alloys welded by Friction Stir Welding)

  • 방한서;김흥주;고민성;장웅성
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.105-108
    • /
    • 2002
  • Al-alloy is utilized widely as a light-weight material to an automobile, a vessel and many kind of equipment, due to the light-weight and its characteristics that is a good tensile strength, elongation and tenacity for bearing heavy load and weight. Al-alloy has the good property of hot working, cold working and corrosion-resistant. But the exiting fusion welding by using Al has some economical and technical problems, but on the other hand, Friction Stir Welding (FSW) that is new joining method can settle the disadvantages that occur to the fusion welding and Is being applied and extended into the various industry fields. On this study, To analyze accurately the mechanical properties of joining area by FSW in Al 6061 alloy by using finite analysis program with finite element method. The size of HAZ and the thermal distribution is simulated and the mechanical properties around the FSW joining area to the Al-alloy 6061 is examined.

이종 AI합금의 저항점용접부 용접성과 피로특성에 관한 연구 (A Study on the Weldability and the Fatigue Characteristics in Resistance pot Welding of 5182-O/6061-T6 Dissimilar Aluminum Alloy Sheets)

  • 박진철;정원욱;강성수
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.44-52
    • /
    • 1999
  • This study deals with spot weld ability of dissimilar aluminum alloy sheets in order to take advantage of its lightweight and strength. The paper also shows the relationship between weld elements(i.e. current, welding time and tip force) and weld quality on the resistance spot weld part of the same and dissimilar Al alloy. The conclusions are: (1) Because of excessive tip force, deep indentation remained at the Al 5182 side which is lower stiffness at the dissimilar Al alloy. (2) Weld quality (i.e. tensile shear strength) of dissimilar Al alloy is superior to that of the same Al 6061 alloy. (3) As long cycles, fatigue life of spot weld specimen on dissimilar Al alloy sheets was better than that of the same Al alloy.

  • PDF