• Title/Summary/Keyword: A6061

Search Result 387, Processing Time 0.028 seconds

An Evaluation of Factors on the Influence Roundness in Turning Based on the Taguchi Method (다구찌 방법에 기초한 선삭에서 진원도에 영향을 미치는 인자에 관한 평가)

  • Kang, Shin-Gil;Lee, Chang-Ho;Jang, Sung-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • The purpose of this study is to improve the roundness of CNC turning so that helps the operator to choose the right turning conditions to produce a product with the given parameters. This paper focuses on determining the optimal levels of machining factors for circular shaft with CNC turning. For this purpose, the optimization of factors is performed based on experimental design method. A design and analysis of experiments are conducted to study the effects of these factors on the roundness by using the SIN ratio, analysis of ANOVA, and F-test. Factors, namely, fixed pressure, wall thickness, depth of cut, and feed rate are optimized with consideration of the roundness. The boring tool used in this study is a tungsten carbide coated. The material of workpiece is Al6061 and the machining method is dry cutting.

Optical Application of Diamond Turning Process (광학 응용을 위한 다이아몬드 터닝 가공)

  • 이봉주;김대중;정상화;박순섭;김상석;김정호;유영문;김주하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1881-1884
    • /
    • 2003
  • Diamond turning machines have, been used for the processing of surface like a mirror with the control scheme of minimizing shape error, Ultra-precision diamond fuming is applied to produce highly precision optical components required not only a high machining accuracy but also a good surface roughness. Al-6061 is widely used as optical parts such as laser reflector's mirror or multimedia instrument. In this study, thermal-imaged Al flat mirrors are fabricated by SPDT. The surface roughness 3.472 nm Ra, power 2 fringe(at 632.8 nm) and irregularity 1 fringe(at 632.8 nm) for form waviness of thermal-imaged Al flat mirror are very satisfied to the required specification in industry.

  • PDF

A Study on the Forming Process Design of Cylindrical Multithickness Shell (다단 벽두께 원통 쉘 성형 공정 설계에 관한 연구)

  • 신보성;최두선;김동진;김병민;한규택;신영우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.943-948
    • /
    • 1996
  • In this paper. we will discuss in making large size cylindrical shells with multithickness wall sections such as straight, stepped, tapered sides. These shells are constructed of type 6061 O temper aluminum starting with a blanking size of 877 mm plate. Its diameter to length ratio of 1 to 2.78 and a 36.7% wall reduction is achieved by our continuous deep drawing process. This process required no in-process annealing. But after cold working, these shells is performed heat treatment to T6 condition. These shells are used for the making of seamless LPG pressure vessels after the spinning process. This process is composed of deep drawing, reverse redrawing, drawing-ironing and several ironing processes. In the verification of forming process design, we used DEFORM code.

  • PDF

Thixoforging Process of Rheology Materials Fabricated by Spiral Mechanical Stirring Equipment (나선형 기계 교반 장비로 제조된 레오로지 소재의 Thixoforging 공정)

  • Jung, I.K.;Han, S.H.;Bae, J.W.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.5-8
    • /
    • 2008
  • As the semi-solid forming technology has a lot of advantages compared to the die casting, squeeze casting and hot/cold forging, it has been studied actively. This paper focuses on the thixoforging of the rheological materials fabricated by the spiral mechanical stirring equipment with A356 casting aluminum alloy and A6061 wrought aluminum alloy. Formability tests of rheological materials fabricated by spiral mechanical stirring were carried out and the microstructures of forged sample were observed. After thixoforging experiment, the heat-treated conditions of forged samples are investigated to improve the mechanical properties. These results are able to suggest the possibility of commercialization for rheological materials fabricated by spiral mechanical stirring.

Analysis of IR lens mounting with elastomer (밀봉재를 이용한 적외선 렌즈 마운팅 분석)

  • 김연수;김현숙;최세철;김창우
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.460-462
    • /
    • 2001
  • We have analyzed the characteristics of IR lens mounting with elastomer and applied the results to the mounting of a silicon lens with diameter 117 mm which is the objective of a thermal imaging system. The elastomer, the 577 primerless silicone adhesive (Dow Corning Co.) which is heat cure type, and the mount material, A16061 are used for our analysis. Theoretical analysis gives the result that the space between lens and mount is required to be more than 250 ${\mu}{\textrm}{m}$ under the operational temperature conditions of -40~+6$0^{\circ}C$.

  • PDF

Aging model for Al-Mg-Si forged part (Al-Mg-Si 단조품의 시효 모델)

  • Kwon Y.-N.;Lee Y.-S.;Lee J.-H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.307-310
    • /
    • 2005
  • Ageing behavior of the Al-Mg-Si alloy was modeled for the use of optimization of Al forging product. Typical precipitates of Al-Mg-Si alloy are a wide variety of metastable phases (e.g. GP zones, $\beta',\beta'$). These rod shaped particles take a role to hinder the dislocation movement. The precipitation sequence in Al-Mg-Si alloys is quite complex and the strength of precipitate particles differs with the ageing condition. In the present study, the ageing behavior of Al-Mg-Si alloy was investigated by using an industrial grade Al 6061 alloy forged product, which was a perform for an Al impeller for turbo charger. The precipitate hardening models by Esmaeili's approach were used for the analysis of ageing behavior.

  • PDF

Prediction of Surface Roughness in Hole Machining Using an Endmill (엔드밀을 활용한 홀 가공 시 표면거칠기 예측에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.42-47
    • /
    • 2019
  • Helical machining is an efficient method for machining holes using an endmill. In this study, a surface roughness prediction model was constructed for improving the productivity of hole machining. Experiments were conducted to form holes by the helical machining of AL6061-T4 aluminum sheets and correlation analysis was performed to examine the relationships between the variables based on the measured results. Meanwhile, a regression analysis technique was used to construct and evaluate the prediction model. Through these analyses, the parameter which has the greatest influence on the surface roughness when the hole is formed by the helical machining is the feed, followed by the number of revolutions of the endmill. Moreover, for the axial feed of the endmill, it was concluded that the influence of the surface roughness is small compared to the other two parameters but it is a factor worth considering to improve the accuracy when constructing the predictive model.

A Study on the Micro Turning Machinability of A1-Mg Alloy Using Polycrystalline Diamond Tool (다결정 다이아몬드 공구를 이용한 Al-Mg계 합금의 미소선삭가공특성에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.122-130
    • /
    • 1996
  • In this study, machinability of some aluminum-magnesium alloy are experimentally investigated using polycrystalline diamond tool with turning, and evaluated some independent cutting variables affected micrometal cutting characteristics as cutting force, specific cutting resistance, shear angles. To know the effect of cutting parameters of single point diamond machining, experiments were performed to measure cutting forces for high speed turning of aluminum alloy 6061-T6, SM45C and FC20 with poly- crystalline diamond and coated cemented carbide tool. Independent cutting variables were changed to a variety of cutting speed, feed rate, rake angles, material properties of workpiece and tool. Futhermore. Some useful informations are obtained in this study can guide micro metal cutting of aluminum alloy with diamond tool.

  • PDF

Friction Welding of Dissimilar Press Punch Materials and Its Evaluation by AE (신소재 금형펀치의 이종재 마찰용접 개발과 AE품질평가를 위한 연구)

  • 오세규;박일동;이원석
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.43-53
    • /
    • 1997
  • The complete joining method for dissimilar press punch materials and its real-time evaluation method is not available at present. Brazing method has been used for joining them, but it is known that the welded joint by the brazing has the lower bonding efficiency and reliability than the diffusion welding. The friction welding with a diffusion mechanism in bonding was applied in this study. This work was carried out to determine the proper friction welding conditions and to analyze mechanical properties of friction welded joints of sintered carbide tool materials (SKNM50 for the blade part of press punch) to alloy steel (SCM440 for the shank part of press punch) using aluminum (A6061 for the interlayer material) as an insert material between the sintered carbide tool materials and the alloy steel. In addition, acoustic emission test was carried out during friction welding to evaluate the weld quality.

  • PDF

Determination of Flow Stress and Friction Factor by the Ring Compression Test (II) (링압축실험에 의한 유동응력 및 마찰인자의 결정 (II))

  • 최영민;김낙수
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.215-228
    • /
    • 1994
  • The purpose of this paper is to pursue a general method to determine both the flow stress of a material and the friction factor by ring compression test. The materials are assumed to obey the expanded n-power hardening rule including the strain-rate effect. Ring compression is simulated by the rigid-plastic finite element method to obtain the database used in determining the flow stress and friction factor. The Simulation is conducted for various strain hardening exponent, strain-rate sensitivity, friction factor, and compressing speed, as variables. It is assumed that the friction factor is constant during the compression process. To evaluate the compatibility of the database, experiments are carried out at room and evaluated temperature using specimens of aluminum 6061-T6 under dry and grease lubrication condition. It is shown that the proposed test method is useful and easy to use in determining the flow stress and the friction factor.

  • PDF