• Title/Summary/Keyword: A5052-H112

Search Result 6, Processing Time 0.02 seconds

Microstructures of Friction Stir Lap Weld in A5052-H112 Alloy (A5052-H112 합금의 겹치기 마찰교반접합 조직 특성)

  • Ko, Young-Bong;Lee, Joong-Hun;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.17-24
    • /
    • 2009
  • The Friction Stir Welding(FSW) has mainly been used for making butt joints in Al alloys. Development of Friction Stir Lap Welding(FSLW) would expand the number of applications. Microstructure of FSLW in A5052-H112 alloy was investigated under varying rotation and welding speed. As the rotation speed was increased and the welding speed was decreased, a amount of heat was increased. As a result, bead interval was narrower, bead width are larger, and experimental bead interval was almost similar to theoretical bead interval. Typical microstructures of FSLW A5052-H112 alloy consist of three zones, including Stir Zone(SZ), Thermo-Mechanically Affected Zone(TMAZ) and Heat Affected Zone(HAZ). As a amount of heat was increased, average grain size was larger in three zones. Nevertheless, the aspect ratio was almost fixed for FSLW conditions. The misorientation of SZ, HAZ and TMAZ was examined. A large number of low angle grain boundaries, which were formed by severe plastic deformation, were showed in TMAZ as comparison with SZ and HAZ. Microhardness distribution was high in order of BM, SZ, TMAZ, and HAZ. The Micro-hardness distribution in HAZ, TMAZ of upper plate were lager than lower plate. Relationship between average grain size and microhardness was almost corresponded to Hall-Petch equation.

Joining Ability and Mechanical Properties of Friction Stir Lap Welded A5052-H112 Alloy (A5052-H112 합금의 겹치기 마찰교반접합 건전성)

  • Ko, Young-Bong;Choi, Jun-Woong;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.34-40
    • /
    • 2010
  • In Friction Stir Lap Welding(FSLW), the movement of material within the weld was more important than the microstructure, due to the interface present between the sheets. Thus, The soundness of free defect, Effective Sheet Thickness(EST) and width of joint were most important factor of mechanical properties. Specimens by lap joint types that were 'A-type' and 'R-type' were made in this study. A-type tensile specimen was loaded at advancing side and R-type tensile specimen was loaded at retreating side. Macro-, micro-structural observation and mechanical properties of FSLW A5052-H112 alloy ware investigated under varying rotating and welding speed. The results were as follows: Material hook formed decreasing after sharply increasing was appeared at the end interface of joint area in advanced side, and material hook formed decreasing after smoothly increasing was observed at that in retreated side. Tensile load had no relation with defects. As rotating speed was higher, tensile strength was increasing and EST was decreasing regardless of joint types. joint efficiency was over 70%. In a result of fractography, fracture in A-type was partially occurred by dimple in SZ, and fracture in R-type was generally occurred by dimple in HAZ.

Microstructure and Mechanical Properties of AA6061/AA5052/AA1050 Alloy Fabricated by Cold Roll-Bonding and Subsequently Annealed

  • Seong-Hee Lee;Sang-Hyeon Jo;Jae-Yeol Jeon
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.439-446
    • /
    • 2023
  • Changes in the microstructure and mechanical properties of as-roll-bonded AA6061/AA5052/AA1050 three-layered sheet with increasing annealing temperature were investigated in detail. The commercial AA6061, AA5052 and AA1050 sheets with 2 mm thickness were roll-bonded by multi-pass rolling at ambient temperature. The roll-bonded Al sheets were then annealed for 1 h at various temperatures from 200 to 400 ℃. The specimens annealed up to 250 ℃ showed a typical deformation structure where the grains are elongated in the rolling direction in all regions. However, after annealing at 300 ℃, while AA6061 and AA1050 regions still retained the deformation structure, but AA5052 region changed into complete recrystallization. For all the annealed materials, the fraction of high angle grain boundaries was lower than that of low angle grain boundaries. In addition, while the rolling texture of the {110}<112> and {123}<634> components strongly developed in the AA6061 and AA1050 regions, in the AA5052 region the recrystallization texture of the {100}<001> component developed. After annealing at 350 ℃ the recrystallization texture developed in all regions. The as-rolled material exhibited a relatively high tensile strength of 282 MPa and elongation of 18 %. However, the tensile strength decreased and the elongation increased gradually with the increase in annealing temperature. The changes in mechanical properties with increasing annealing temperature were compared with those of other three-layered Al sheets fabricated in previous studies.

Characteristics of Friction Stir Lap Weldment according to Joining Parameter in 5052 Aluminium Alloy (5052 알루미늄 합금에서 접합변수에 따른 겹치기 마찰교반접합부의 특성)

  • Ko, Young-Bong;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.5
    • /
    • pp.181-187
    • /
    • 2012
  • The Friction Stir Welding (FSW) has mainly been used for making butt joints in Al alloys. The development of Friction Stir Lap Welding (FSLW) would expand the number of applications. In this study, microstructures and mechanical properties of FSLW in A5052 alloy were investigated under varying rotating speed and probe length. Investigating the characteristics as FSLWed conditions were as below ; Failure Maximum load by shear fracture was increased proportional to the width of joint area, which was increased by input heat, stirring intensity in the case of 2.3 mm probe length. Tensile fracture occurred, and maximum load was determined due to side worm hole of joint area and softening of microstructure in the case of 3.0 mm probe length. In the case of 3.7 mm probe length, material hook and bottom worm hole were appeared at the end interface of joint area. The most sound FSLW condition with no defects was 3.0 mm probe length and 1500 rpm-100 mm/min. No defects were showed in 1500 rpm-100 mm/min and 1800 rpm-100 mm/min, but Vickers microhardness distribution in TMAZ/HAZ which was fracture zone was lower in 1800 rpm-100 mm/min than in 1500 rpm-100 mm/min. In this condition highest tensile strength, 215 MPa (allowable rate 78% of joint efficient) was obtained.

A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate (Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구)

  • Kim, In-Ho;Lee, Gil-Young;Ju, Jeong-Min;Park, Kyoung-Tae;Chun, Byong-Sun
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

Effect of Multiple Circular Holes on Fatigue Crack Growth Path

  • Won, Young-Jun;Nishioka, Toshihisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • The mechanical fastening has some advantages in respect of the fastening strength and disassemble of the fastened parts. However, at the same time it has some dangerous factors, can cause fatigue crack initiation and propagation due to not only the static loading such as cargo and passengers but also the dynamic loading like vibrations which occur in the engines and the propellers. For this reason, the strength evaluation for the mechanical fastenings along with the sophisticated and detailed mechanical design and the safety evaluation should be executed, In this paper, we were carried out experiments to study fatigue crack growth paths in structures containing the multiple circular holes. It was investigated that how circular holes are affected on fatigue crack growth paths using the specimen consists of A5052-H112, which is widely used as the ship materials. It was found from the experimental results that the fatigue crack as if it is drawn to circular holes when crack tip approach to circular holes. However, it did not go into circular hole if there is the next circular hole. Therefore, the clarification of mechanism on the fatigue crack initiation and the propagation in structures containing the multiple circular holes can be expected in this study.