• 제목/요약/키워드: A5052

검색결과 145건 처리시간 0.024초

5052계 Al합금의 블록하중에 대한 균열진전 (Crack Propagation within Block Load of 5052 Aluminum Alloy)

  • 김엽래;이동명;이종선;여은구
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.32-38
    • /
    • 1999
  • Fatigue crack propagation behavior for block load in high strength aluminum alloys was investigated in this study. The materials used in this study are aluminum alloy 5052-H32. Initial crack was made by applying cyclic load to a through crack with chevron notch. Crack length was measured from calibration curve, which was plotted by known crack length and resistance of standard specimens. Load was obtained from linear regression formula. Unloading elastic compliance method was applied to check the crack closure and cracked area. The present study results can be usefully applied to predicting the change of crack propagation rate, the crack closure, and the delay of crack propagation.

  • PDF

반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구 (Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method)

  • 오세현;샤오샤오;김영석
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

5052-H32 알루미늄 합금의 통전 소성에 미치는 에너지밀도의 영향 검증 (Evaluation of Effect of Electric Energy Density on the Electroplasticity of 5052-H32 Aluminum Alloys)

  • 염경호;홍성태;정용하;한경식;한흥남;김문조
    • 대한기계학회논문집A
    • /
    • 제39권7호
    • /
    • pp.659-663
    • /
    • 2015
  • 본 연구에서는 다른 게이지 체적을 가지는 시편들의 동일한 에너지밀도 하에서의 통전소성 인장 거동을 실험을 통하여 비교하였다. 5052-H32 알루미늄 합금의 통전소성 인장실험의 결과는 시편의 게이지 길이나 폭 혹은 체적에 상관없이 동일한 에너지밀도가 가해질 때 거의 유사한 통전소성 특성을 보여준다. 특히 통전소성 인장시험의 전형적인 현상인 stress-drop 의 크기를 비교할 때, 소재의 통전소성이 개별적인 전류밀도와 통전시간이 아닌 에너지밀도에 의해서 영향을 받는다는 것을 확인할 수 있다. 본 논문의 결과는 통전소성 현상을 응용한 제조공정의 개발 시 공정설계변수들 중 전류밀도와 통전시간 두 가지를 에너지밀도 하나로 줄일 수 있다는 것을 의미하며 이는 향 후 다양한 통전소성 기반 제조기술의 개발에 이바지 할 것으로 예상된다.

Al5052-O 판재의 최적 점진성형 연구 (Optimization of Single Point Incremental Forming of Al5052-O Sheet)

  • 김찬일;샤오샤오;도반크옹;김영석
    • 대한기계학회논문집A
    • /
    • 제41권3호
    • /
    • pp.181-186
    • /
    • 2017
  • 점진 판재 성형은 금형을 제작하지 않고 판재를 가공하는 방법으로써 빠른 시제품 제작과 소량 생산에 적합한 성형법이다. 이러한 점진 판재 성형의 공정 변수로 공구 직경, 매 스탭당 z-방향 깊이, 공구 이송속도, 공구 회전 속도 등은 성형품의 품질에 크게 영향을 미친다. 본 연구에서는 Al5052-O(0.8mm) 판재를 사용하여 Varying Wall Angle Conical Frustum 모델의 점진성형을 실시하였으며, 각각의 변수들의 조합에서 성형성을 판단하였다. 다구찌 기법을 사용하여 점진성형 변수들의 조합을 찾아내고, 그레이 관계형 최적화를 통하여 최적 성형 변수 값의 조합을 찾아 내였다. 최종 성형물의 품질은 성형성, 스프링 백, 두께 감소량을 측정하여 판단하였다. 본 연구의 실험 조건에서의 최적의 변수 조합은 공구직경 6 mm, 회전속도 60rpm, 매 스탭당 z-방향 깊이 0.3 mm, 이송속도 500 mm/min으로 판단되었다.

다구찌 기법을 이용한 섬유금속적층판과 Al 5052 합금의 경사 홀 클린칭 접합력 향상을 위한 수치적 연구 (Numerical Study for the Improvement of Tapered-hole Clinching Joint Strength of Fiber Metal Laminates and Aluminum 5052 using the Taguchi Method)

  • 강동식;이병언;박으뜸;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제24권1호
    • /
    • pp.37-43
    • /
    • 2015
  • The purpose of the current study is to improve the clinching joint strength of aluminum and fiber metal laminates (FMLs) comprised of three layers. The joining of FML and Al 5052 by a conventional clinching joint has some disadvantages such as necking of the upper sheet, lack of interlocking, defects caused by the vertical load, and especially loss of strength of the composite material due to the low ductility. In the current study, a tapered-hole clinching method is proposed as an alternative for the joining of Al 5052 and FMLs. A hole with a tapered shape is formed before the joining process. The design parameters were evaluated using the Taguchi method for the geometry of the tapered hole in order to determine the maximum separation load. The diameter of the punch corner, clearance, punch stroke and the tapered length were used as the main variables in the Taguchi method. In conclusion, the contribution ratio for each of the fours variable examined was 35.07%, 22.44%, 21.32% and 14.11%, respectively. In addition, the appropriate combination of the design parameters can make a 5% improvement in the vertical direction joint strength.

SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도 (Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method)

  • 이만석;김택영;강세형;김호경
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

반복겹침접합 압연공정에 의해 제조한 초미세립 AA1050/AA5052 복합알루미늄합금판재의 어닐링 특성 (Annealing Characteristics of Ultrafine Grained AA1050/AA5052 Complex Aluminum Alloy Sheet Fabricated by Accumulative Roll-Bonding)

  • 이성희;이광진
    • 한국재료학회지
    • /
    • 제21권12호
    • /
    • pp.655-659
    • /
    • 2011
  • An ultrafine grained complex aluminum alloy was fabricated by an accumulative roll-bonding (ARB) process using dissimilar aluminum alloys of AA1050 and AA5052 and subsequently annealed. A two-layer stack ARB process was performed up to six cycles without lubricant at an ambient temperature. In the ARB process, the dissimilar aluminum alloys, AA1050 and AA5052, with the same dimensions were stacked on each other after surface treatment, rolled to the thickness reduction of 50%, and then cut in half length by a shearing machine. The same procedure was repeated up to six cycles. A sound complex aluminum alloy sheet was fabricated by the ARB process, and then subsequently annealed for 0.5h at various temperatures ranging from 100 to $350^{\circ}C$. The tensile strength decreased largely with an increasing annealing temperature, especially at temperatures of 150 to $250^{\circ}C$. However, above $250^{\circ}C$ it hardly decreased even when the annealing temperature was increased. On the other hand, the total elongation increased greatly above $250^{\circ}C$. The hardness exhibited inhomogeneous distribution in the thickness direction of the specimens annealed at relatively low temperatures, however it had a homogeneous distribution in specimens annealed at high temperatures.

반복-굽힘 모멘트가 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전에 미치는 영향 (The Influence of Cyclic-bending Moment on the Delamination Zone and the Fatigue Crack Propagation in A15052/AFRP Laminates)

  • 송삼홍;김철웅
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.231-237
    • /
    • 2000
  • A15052/AFRP laminates were developed principally to obtain a material with good fatigue strength, in which possible cracks would grow very slowly. Weight savings of more than 30% should be attainable in practice. Also, the crack bridging fibers could still was carry a significant part of the load over the crack, thus the COD and stress intensity factor was reduced at the crack tip. A15052/ AFRP laminates consists of three thin sheets of 5052-H34 aluminum alloy and two layers of [0] unidirectional aramid fiber prepreg. The cyclic-bending moment test was investigated based on applying the five kinds of bending moments. The size of the delamination zone produced between 5052-H34 aluminum alloy sheets and fiber-adhesive layers was measured from ultrasonic C-scan pictures taken around the fatigue crack. In addition, the relationship between the cyclic-bending moment and the delamination zone size was studied and the effect of fiber bridging mechanism was also considered.

  • PDF

자동차 커플러 부품(Al5052-H32)의 프로그래시브 드로잉 공정 시 두께 변화 고찰 (Consideration of thickness change during progressive drawing process of automotive coupler parts(AL5052-H32))

  • 박상병;윤재웅
    • Design & Manufacturing
    • /
    • 제14권3호
    • /
    • pp.37-43
    • /
    • 2020
  • Progressive drawing processing is one of the manufacturing processes used to mass-produce a variety of products on the industrial site. In this study, the goal is to achieve a uniform product thickness of at least 1.3mm by reducing the wall thickness of the coupler parts used in automotive air conditioning systems to within 15% using A5052-H32 materials. The progressive die was designed using Blank's law of volume invariance. Due to the characteristics of the drawing process, the material thickness in the punch R part decreases and the thickness in the die R part increases. When designing the progressive die of the coupler part, an ironing method, a push back method, and a stand-alone die pad method were applied to each process to design a mold in consideration of the drawing rate and to artificially adjust the thickness change. The suitability of the method used in die design was investigated by measuring the thickness change of forming parts for each process. In the final part, it was confirmed that the thickness measurement values of the five regions of a radial line were implemented as 1.34-1.36 mm.

고속충격에 의한 A1 5052-H34 합금의 관통거동에 관한 연구 (A Study on perforation behavior of Aluminum 5052-H34 alloy by high velocity impact)

  • 손세원;이두성;홍성희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.174-179
    • /
    • 2001
  • In order to investigate the fracture behaviors(perforation modes) and resistance to perforation during ballistic impact of aluminum alloy plate, ballistic tests were conducted. Depth of penetration experiments with 5.56mm-diameter ball projectile launched into 25mm-thickness Al 5052-H34 targets were conducted. A powder gun launched the 3.55g projectiles at striking velocities between 0.6 and 1.0 km/s. radiography of the damaged targets showed different penetration modes as striking velocities increased. Resistance to perforation is determined by the protection ballistic limit($V_{50}$), a statistical velocity with 50% probability for complete perforation. Fracture behaviors and ballistic tolerance, described by perforation modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_{50}$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete perforation during PTP tests. The effect of various impact velocity are studied with depth of penetration.

  • PDF