• Title/Summary/Keyword: A5052

Search Result 145, Processing Time 0.024 seconds

A Study on the ballistic performance and fracture mode of anodized Aluminum 5052-H34 alloy laminates (알루미늄 5052-H34 합금 적층재의 방탄성능과 파괴모드에 관한 연구)

  • 손세원;김희재;박영의;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.507-512
    • /
    • 2000
  • The ob.jective of this study is to determine fracture behaviors(penetrati0n modes) and resistance to penetration duringballistic impact of Al 5052-H34 alloy laminates and anodized Al 5052-H34 alloy laminates. Resistance to penetration is determined by $V_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed that result from V50 test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with 0" obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with 0" obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of A1 5052-H34 alloy laminates compared to those of anodized Al 5052-H34 alloy laminates.y laminates.

  • PDF

Study on the mechanical properties of 5052 aluminum alloy laser welds (5052 알루미늄 합금 레이저 용접부의 기계적 성질에 관한 연구)

  • 윤종원;이윤상;이문용;정병훈
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • 5052 aluminum alloy sheets of 2mm thickness were butt welded using a continuous wave Nd:YAG laser with and without Ar shielding gas. Vickers hardness, transverse-weld tensile and bulge tests were carried out to investigate the effect of Ar shielding gas on the mechanical properties and formability of laser welds. Porosity in the weld metals was investigated using an optical microscope. Mechanical properties and formability of 5052 aluminum alloy laser welds were degraded compared to those of base metal. However, those properties were improved due to the reduced size and number of porosity when Ar shielding gas was used.

  • PDF

An Investigation of Microstructural Evolution and Sliding Wear Behavior of Ultra-Fine Grained 5052 Aluminum Alloy Fabricated by a Accumulative Roll-Bonding Process (누적압연접합에 의한 5052 Al 합금의 결정립 미세화와 기계적 특성 연구)

  • 하종수;강석하;김용석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.84-87
    • /
    • 2003
  • Microstructural evolution and dry sliding wear behavior of ultra-fine grained 5052 Al alloy obtained by an accumulative roll-bonding process have been investigated. After 7 ARB cycles, ultra-fine grains with large misorientations between neighboring grains were obtained. The grain size was about 0.2$\mu\textrm{m}$. The hardness, tensile and yield strengths of the ultra-fine grained alloy increased as the amount of accumulated strain increased with the ARB cycles. Sliding wear teats of the ultra-fine grained 5052 Al alloy were conducted at room temperature. Wear rate of the ultra-fine grained alloy increased in spite of the increase of hardness. Surfaces of the worn specimens were examined with SEM to investigate wear mechanism of the ultra-fine grained alloy.

  • PDF

An Investigation of Microstructural Evolution and Sliding Wear Behavior of Ultra-Fine Grained 5052 Aluminum Alloy Fabricated by an Accumulative Roll-Bonding Process (누적압연접합에 의한 5052 Al 합금의 결정립 미세화와 기계적 특성 연구)

  • 하종수;강석하;김용석
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.376-381
    • /
    • 2003
  • Microstructural evolution and dry sliding wear behavior of ultra-fine grained 5052 Al alloy obtained by an accumulative roll-bonding process have been investigated. After 7 ARB cycles, ultra-fine grains with a large misorientation between neighboring grains were obtained. The grain size was about 0.2 $\mu$m. The hardness, tensile and yield strengths of the ultra-fine grained alloy increased as the amount of accumulated strain increased with the ARB cycles. Sliding wear tests of the ultra-fine grained 5052 Al alloy were conducted at room temperature. Wear rate of the ultra-fine grained alloy increased in spite of the increase of hardness. Surface of the worn specimens were examined with SEM to investigate wear mechanism of the ultra-fine grained alloy.

Erosion Corrosion Characteristics of Al5052-O and Al6061-T6 Aluminum Alloys with Flow Rate of Seawater (해수 유속 변화에 따른 Al5052-O와 Al6061-T6 알루미늄 합금의 침식부식 특성)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.292-299
    • /
    • 2019
  • The hull material of a high-speed ship may cause erosion damage from fluid impact. When physical erosion and electrochemical corrosion combine, erosion corrosion damage occurs. The aluminum ship is vulnerable to erosion corrosion because it can be operated at high speed. Thus, in this study, Al5052-O and Al6061-T6 aluminum alloys for the marine environment were selected as experimental materials. The erosion corrosion resistance of Al5052-O and Al6061-T6 aluminum alloys in seawater was investigated by an erosion test and potentiodynamic polarization test at the various flow rate (0 m/s, 5 m/s, 10 m/s, 15 m/s, 20 m/s). Erosion corrosion characteristics were evaluated by surface analysis, 3D analysis, SEM analysis, and the Tafel extrapolation method. The results of surface damage analysis after the erosion test showed that Al6061-T6 presented better erosion resistance than Al5052-O. The results of the potentiodynamic polarization test at the various flow rate, corrosion current density by Tafel extrapolation presented lower values of Al6061-T6 than Al5052-O. Al5052-O showed more surface damage than Al6061-T6 at all flow rates. Consequently, Al6061-T6 presented better erosion corrosion resistance than Al5052-O. The results of this study are valuable data for selecting hull material for an aluminum alloy vessel.

An Experimental Study on the Strength Evaluation of A1-5052 Tensile-Shear Specimens Using a Mechanical Press Joining Method (기계적 프레스 접합법을 이용한 A1-5052 인장-전단 시험편의 강도 평가에 관한 실험적 연구)

  • 임두환;이병우;류현호;김호경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2003
  • A mechanical press joining was investigated in ender for joining A1-5052 sheets for automobile body weight reduction. Static tensile and fatigue tests were conducted using tensile-shear specimens for evaluation of fatigue strength of the joint. During Tox joining process for A1-5052 plates, using the current sheet thickness and punch diameter, the optimal applied punching force was found to be 32 kN under the current joining condition. For the static tensile-shear experiment results, the fracture mode is classified into interface fracture mode, in which the neck area fractured due to influence of neck thickness, and pull-out fracture mode due to influence of plastic deformation of the joining area. And, during fatigue tests for the A1-5052 tensile shear specimens, interface failure mode occurred in the region of low cycle. The fatigue endurance limit approached to 6 percents of the maximum applied load, considering fatigue lifetime of $2.5\times10^6$ cycles.

Corrosion-Resistant High Strength S20C Element Riveted Al5052-SPFC980Y Steel Joints by Resistance Element Spot Welding (S20C 리벳된 Al5052와 SPFC980Y 강철 resistance-element 점용접 접합부의 미세조직 발달 및 고강도-부식 저항 특성)

  • Baek, Seung-Yeop;Song, Jong-Ho;Park, Seung-Youn;Song, Il-Jong;Lee, Hyun-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.794-801
    • /
    • 2021
  • This study examined the mechanical strength and corrosion resistance of a dissimilar joint with an aluminum alloy and steel by resistance element spot welding. SPFC980 steels and Al5052 alloys were applied as the base materials. S20C steels were assembled on Al5052 for the riveting element before the electric resistance welding process. The SPFC980-S20C riveted Al5052 was welded at a 6.5 kA current and 250 kgf/㎠. As a result, the engraved S20C elements formed unstable nuggets after the spot welding processes. In contrast, in the embossed S20C elements, exceptional mechanical properties, such as robust corrosion resistance and fatigue resistance, were obtained by structurally sound joints. The correlation between the microstructure and mechanical properties were examined by microstructural investigations and FEM simulations. The corrosion reliability of element spot-welded SPFC980-Al5052 dissimilar joints was investigated systematically.

Joint Characteristics of Spot Friction Stir Welded A 5052 Alloy Sheet (마찰교반 점용접한 A 5052 알루미늄 합금판재의 접합부 특성)

  • Yeon, Yun-Mo;Lee, Won-Bae;Lee, Chang-Yong;Jung, Seung-Boo;Song, Keun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • In this study, the microstructure and mechanical properties of spot friction stir welded A 5052 alloy were investigated. Especially, the effect of insertion depth of welding tool on microstructural changes and mechanical properties was investigated in order to obtain the optimum spot friction stir welding condition. The lap shear load of spot friction stir welded A 5052 alloy plates showed lower value at the shallowest insertion depth and increased with tool insertion depth. At 1.6mm, the maximum value of 3.35 kN was obtained, and then dropped to lower load when the insertion depth was deeper. Spot friction stir welded joints showed shear fracture mode at shallower insertion depths and fracture mode changed to plug fracture mode as the insertion depth was deeper.

Effect of Welding Parameters on the Friction Stir Weldability of 5052 Al alloy (5052 알루미늄 합금 마찰교반접합부 특성에 미치는 접합인자의 영향)

  • 이원배;김상원;이창용;연윤모;장웅성;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.69-76
    • /
    • 2004
  • Effects of friction stir welding parameters such as tool rotation speed and welding speed on the joints properties of 5052 Al alloys were studied in this study. A wide range of friction stir welding conditions could be applied to join 5052 AA alloy without defects in the weld zone except for certain welding conditions with a lower heat input. Microstructures near the weld zone showed general weld structures such as stir zone (SZ), thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). Each zone showed the dynamically recrystallized grain, transient grain and structure similar to base metal's, respectively. Hardness distribution near the weld zone represented a similar value of the base metal under wide welding conditions. However, in case of 800 rpm of tool rotation speed, hardness of the stir zone had a higher value due to the fine grain with lots of dislocation tangle, a higher angle grain boundary and some of Al3Fe particles. Except joints with weld defects, tensile strength and elongation of the joints had values similar to the base metal values and fracture always occurred in the regions approximately 5mm away from the weld center.

EVALUATION OF FRICTION WELDABILITY OF TYPE 5052 ALALLOY/LOW CARBON STEEL JOINT.

  • Kim, Kyung-Kyun;Lee, Won-Bae;Yeon, Yun-Mo;Kim, Dae-Up;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.528-533
    • /
    • 2002
  • The mechanical and metallurgical properties of friction welded joints type 5052 Al alloy/A36 steel have been studied in this paper. The joint strength increased with increasing upset pressure and friction time till it reached the critical value. The joint strength was fixed at low strength compare to that of base metal in the case of increasing friction time. Microstructure of 5052 Al alloy was greatly deformed near the weld interface. The very fine and equaxied grain structure was observed at the near interface. The elongated grain was formed outside dynamic recrystallizatoin region at the peripheral part, while the A36 steel' side was not deformed. The hardness of the near interface was slightly softer than that of 5052 Al alloy base metal. The maximum softening width was about 8mm from the interface. In the present work, the friction welding condition, t$_1$=0.5sec, P$_2$=137.5MPa, showed a maximum joint strength (202MPa) when friction pressure, upset time and rotation speed were fixed at 75MPa, 5sec, 2000rev/min and these were the optimum friction welding condition of 5052Al/A36 steel joints.

  • PDF