• Title/Summary/Keyword: A356 cast alloy

Search Result 38, Processing Time 0.021 seconds

The Effects of Mn and Cr Additions on the Microstructure of A356 Alloys Containing Impure Fe (불순 Fe를 함유한 A356 주조합금에서 미세조직 형성에 관한 Mn과 Cr의 효과)

  • Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.128-133
    • /
    • 2005
  • The effects of Mn and Cr on the crystallization behaviors of Fe-bearing intennetallics in A356 alloy were studied. Coarse and acicular ${\beta}-Al_{5}$FeSi phase in A356-0.20wt.%Fe alloy was modified into small ${\alpha}$-Al(Fe,Mn)Si and ${\alpha}$-Al(Fe,Cr)Si phases in response to Mn and Cr addition, respectively. Increasing of Mn addition amount elevates the crystallizing temperature of ${\alpha}$-Al(Fe,Mn)Si and the Mn/Fe ratio in the ${\alpha}$-Al(Fe,Mn)Si. Cr is more effective to modify ${\beta}-Al_{5}$FeSi in comparison with Mn. ${\alpha}$-Al(Fe,Mn)Si phase had BCC/SC dual structure.

Finite Element Analysis Method for Impact Fracture Prediction of A356 Cast Aluminum Alloy (A356 주조 알루미늄 합금의 충격 파괴 예측을 위한 유한요소해석 기법 연구)

  • Jo, Seong-Woo;Park, Jae-Woo;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.33 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Generally, metal is the most important material used in many engineering applications. Therefore, it is important to understand and predict the damage of metal as result of the impact. The objective of this research is to evaluate the damage criterion on the impact performance of A356 Al-alloy castings. Both experimental method and computational analysis were used to achieve the research objective. In this paper, we performed impact test according to various impact velocities to the A356 cast aluminium specimen for damage prediction. Impact computational simulation was done by applying properties obtained from the tensile test, and damages was predicted according to the damage criteria based plastic work. The good agreement of the results between the experiment and computer simulation shows that the reliability of the proposed FE simulation method to predict fracture of A356 casting components by impact.

Behavior of Eutectic Si and Mechanical Properties of Sr Modified Al-7Si-0.35Mg alloy with Solid Solution Treatment for Sand Casting (Sr 개량처리된 사형주조 Al-7Si-0.35Mg 합금의 열처리에 따른 공정 Si상 변화거동 및 특성평가)

  • Kim, Myoung-Gyun;Hwang, Seok-Min
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we focused on the correlation between the solidification structure, heat treatment and mechanical properties of the A356 alloy according to the conditions of Sr modification. The microstructural evolution of the eutectic Si and ${\alpha}-Al$ phase in the A356 alloy castings depending on the amount of Sr were investigated during solid solution heat treatment using an optical microscope, a scanning electron microscope and an image analyzer. In addition, tensile tests on the heat treated materials examined the relationship between the microstructure and the fracture surface. The as-cast A356 alloys under 40 ppm Sr showed an undermodified microstructure, but that of the added 60-80 ppm Sr had well modified structure of fine fibrous silicon. After solid solution treatment, the microstructure of the undermodified A356 alloy exhibited a partially spheroidized morphology, but the remainder showed the fragmentation of fibrous shaped silicon. The spheroidization of the eutectic silicon in the modified A356 alloys was completed during heat treatment, which was very effective in increasing the elongation. This is supported by the fracture surface in the tensile test.

Evaluation of Age-Hardening Characteristics of Rheo-Cast A356 Alloy by Nano/Micro Hardness Measurement (나노/마이크로 경도 측정에 의한 레오캐스트 A356 합금의 시효경화특성 평가)

  • Cho S. H.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.471-474
    • /
    • 2005
  • This study investigates the nano/microstructure, the aging response, and the mechanical/tribological properties of the eutectic regions in rheoformed A356 alloy-T5 parts using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. The aging responses of the eutectic regions in the rheoformed A356 alloys aged at $150^{\circ}C$ for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Victors hardness $(H_v)$ and indentation $(H_{IT})$ test results showed a similar trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found.

  • PDF

Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Gravity Cast Superchargers Housing Using A356 Aluminum Alloy (A356 알루미늄 합금 슈퍼차저 하우징의 미세조직과 기계적 성질에 미치는 열처리의 영향)

  • Kim, Dae-Hwan;Van, Guen-Ho;Seong, Bong-Hak;Cho, Bok-Hwan;Eom, Jeong-Pil;Park, Seong-Gi;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.32 no.5
    • /
    • pp.231-240
    • /
    • 2012
  • In present study, the effect of heat treatment on the microstructure and mechanical properties of the gravity cast superchargers housing using A356 alloy were investigated. In order to identify the characteristics of superchagers housing casting with heat treatment, Vickers hardness test, electrical conductivity test, opical and scanning electron microscopy were performed. And also, to investigate their mechanical properties, the T6 treated superchagers housing casting in optimum heat treatment condition were carried out tensile test using UTM (Universal Testing Machine).

Tensile Behavior of Cast-Forged Al-Si-Mg Alloy (주/단조 Al-Si-Mg 합금의 인장 거동)

  • Kim K. J.;Kwon Y.-N.;Lee Y. S.;Jeong S. C.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.329-332
    • /
    • 2004
  • Cast-forging process has a lot of advantages in terms of saving materials along with enhancement of mechanical properties. Therefore, this process has been taken as one of candidate process to manufacturing automotive suspension parts. Since most of cast-forging parts are made with using Al-Si alloys of high castability, the mechanical properties largely depends on the primary ${\alpha}$ and eutectic Si particles. During hot forging step these microstructural features evolve with strain increment. In the present study, the mechanical property evolution was investigated in terms of microstructual evolution with strain. Specially, fracture behavior of A356 alloy was studied to find out how to improve the mechanical properties.

  • PDF

Low Cycle Fatigue Characteristics of A356 Cast Aluminum Alloy and Fatigue Life Models (주조 알루미늄합금 A356의 저주기 피로특성 및 피로수명 모델)

  • 고승기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.131-139
    • /
    • 1993
  • Low cycle fatigue characteristics of cast aluminum alloy A356 with a yield strength and ultimate strength of 229 and 283 MPa respectively was evaluated using smooth axial specimen under strain controlled condition. Reversals to failure ranged from 16 to 107. The cast aluminum alloy exhibited cyclically strain-gardening behavior. The results of low cycle fatigue tests indicated that the conventional low cycle fatigue tests indicated that the conventional low cycle fatigue life model was not a satisfactory representation of the data. This occurred because the elastic strain-life curve was not-log-log linear and this phenomena caused a nonconservative and unsafe fatigue life prediction at both extremes of long and short lives. A linear log-log total strain-life model and a bilinear log-log elastic strain-life model were proposed in order to improve the representation of data compared to the conventional low cycle fatigue life model. Both proposed fatigue life models were statistically analyzed using F tests and successfully satisfied. However, the low cycle fatigue life model generated by the bilinear log-log elastic strain-life equation yielded a discontinuous curve with nonconservatism in the region of discontinuity. Among the models examined, the linear log-log total strain-life model provided the best representation of the low cycle fatigue data. Low cycle fatigue life prediction method based on the local strain approach could conveniently incorporated both proposed fatigue life models.

  • PDF

On Shrinkage Cavities Shape Modeling for Fatigue Simulation of A356 Alloy Specimen (A356 합금 시편의 수축공 결함형상에 대한 피로해석용 형상 모델링 방법)

  • Kwak, Si-Young;Cho, In-Sung
    • Journal of Korea Foundry Society
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • During the casting process, it is possible to minimize shrinkage and blowholes by modifying the casting design. However, it is impossible to eliminate these factors completely. Therefore, mechanical design engineers apply a sufficient safety factor owing to the possibility of insufficient performances of the cast products. In this paper, prediction method of the fatigue life of cast products containing shrinkage is conducted by using CT (computed tomography) and the SSM (shape simplification method), and additional fatigue analyses are carried out. The analysis results are then compared to results from actual experiments on samples with shrinkage defects. It is found to be that the considering actual shrinkage in cast products by means of stress and fatigue analyses is more accurate and effective. It is also considered that the proposed hot spot method provides us a good tool to predict the fatigue lifes of cast product.

Plastic Deformation Behavior of Al-Si Alloy (Al-Si 합금의 소성변형 거동)

  • Kwon Y. N.;Kim S. W.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.130-133
    • /
    • 2005
  • The effect of microstructural characteristics of A356 alloys on tensile behavior was studied ill the present study. To authors' knowledge, the microstructural effect on mechanical properties of A356 alloy has not been well understood even though this alloy system is one of the most widely used alloys for the industrial purpose. Specially, quantitative relationship between properties like ductility and fracture toughness with microstructural features is lacking. In the present study, three processing routes was used to fabricate samples with different microstructures like size and distribution of primary alpha and eutectic phases. Also, compressive deformation was used to close casting porosity for the cast samples. Tensile behavior was examine and discussed in terms of microstructural aspects.

  • PDF

Comparison of the Microstructure and Mechanical Property between Gravity Casting Forging and Rheo-diecasting Forging using A356 Alloy (A356 합금의 중력 주조/단조와 Rheo-diecasting/단조의 미세조직 및 기계적 특성 비교)

  • Lee, Jun-Young;Lim, Jae-Yong;Lee, Seung-Yong;Moon, Seoug-Won;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.5
    • /
    • pp.210-214
    • /
    • 2013
  • Recently, the automotive industry has replaced cast iron to lightweight materials like aluminum for engine efficiency of automobiles and an emission control by government. In this paper we studied two auto parts manufacturing methods using an alloy of A356. That is gravity casting and H-NCM Rheo-diecasting forging. We analyzed the microstructure and mechanical properties for this method. In Microstructure analysis results, H-NCM Rheo-diecasting forging has more finer microstrucre and better forging effect. Resulting in better mechanical properties than gravity forging.