• Title/Summary/Keyword: A356

Search Result 1,961, Processing Time 0.024 seconds

A Study on Microstructures and Mechanical Properties of A356/coated SiC Composites Fabricated by Squeeze Casting (Squeeze Casting법에 의해 제조된 A356/coated SiC복합재료의 미세조직과 기계적 특성에 관한 연구)

  • Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.429-437
    • /
    • 1994
  • Influence of interfacial structure between matrix and particle in A356/coated SiC composite fabricated by squeeze casting method was studied. Experimental variables are types of coated metallic film on SiC particles such as Cu, Ni-P, and applied pressure for squeeze casting. It was found that coating treatment on SiC particles improves the wetting of liquid A356 alloy on SiC particles. SiC particle distribution is very homogeneous in A356 matrix alloy which is fabricated by squeeze casting. Analysing the surface morphology of fractured A356/coated SiC, it was concluded that metallic thin film by coating treatment on SiC particle improves the interfacial bonding between particle and matrix, and so does on mechanical properties such as tensile strength. However, there was on significant difference in hardness between those composite made of as-received SiC particle and coated SiC particle.

  • PDF

Modification Behavior of Eutectic Si with Varying Heat Treatment Conditions in A356 Alloy with Al2Ca (Al2Ca를 함유한 A356 합금에서의 다양한 열처리 조건에 따른 공정 Si 개량화 거동)

  • Kim, Se-Jun;Hyun, Soong-Keun;Kim, Shae K.;Yoon, Young-Ok
    • Journal of Korea Foundry Society
    • /
    • v.34 no.5
    • /
    • pp.156-161
    • /
    • 2014
  • This study is focused on the effect of $Al_2Ca$ as a modifier on eutectic Si modification of A356 alloy. Microstructural observation was carried out for as-cast, as-solution treated and as-aged samples. Solution treatment and aging were performed for 2, 4, 6 and 10 hrs at $540^{\circ}C$ and $170^{\circ}C$, respectively. Although A356 alloy, which $Al_2Ca$ was added, has no significant difference in as-cast phases with normal A356 alloys, it shows much more modified eutectic Si, grain refinement and improved tensile property both in as-cast and as-heat treated conditions. TGA result shows that $Al_2Ca$ added A356 alloy has a certain improvement in oxidation resistance.

Mechanical Behavior of A356 depending on the Variation of Microstructure (A356 합금 미세조직변화에 따른 기계적 특성에 관한 연구)

  • Kim K. J.;Kwon Y. N.;Lee Y. S.;Lee J. H.;Lee S. H.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.273-276
    • /
    • 2004
  • A356 alloy is one of the most popular casting aluminum alloys due to its good castability. It is well known that the mechanical properties of A356 alloy strongly depend on its characteristic microstructure, such as the size of eutectic Si, primary $\alpha$ dendrite and so on. These microstructural features are determined during the casting and solidification process, which implies the strong relationship with mechanical properties with solidification methods. In the present study, the mechanical characteristics of A356 alloy was investigated by using squeeze cast control arm in terms of the microstructural features, such as the size of eutectic Si, primary a dendrite. By doing so, the most favorable microstructure of A356 could be determined for Al control arm that should be one of the most reliable parts in automobile.

  • PDF

Effect of Microporosity on High Cycle Fatigue Property of A356 Alloy (A356 합금의 고주기 피로특성에 미치는 미소기공율의 영향)

  • Yoo, Suk-Jong;Lee, Choong-Do
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.198-204
    • /
    • 2011
  • The present study was aimed to investigate the dependence of fatigue property on microporosity variation of low-pressure die-cast (LPDC) A356 alloy. The fatigue property of A356 alloy was evaluated through high cycle fatigue test, and the microporosity-terms used were the fractographic porosity measured from SEM observation on fractured surface and the volumetric porosity obtained through the density measurement using Archimedes's principle. The number of cycles to failure of A356 alloys depends obviously upon the variation of fractographic porosity, and can describe in terms of the defect susceptibility which depends on the microporosity variation at a given value of stress amplitude. The modified Basquin's equation was suggested through the combination of microporosity variation and static maximum tensile stress to fatigue strength coefficient. Using modified Basquin's equation, it could suggest that the maximum values of fatigue strength coefficient and exponent achievable in defect-free condition of A356 alloy are 265 MPa, -0.07, respectively.

Microstructural Modification of High-Fe Containing A356 Alloy by Liquid Metal Shearing Process (용융금속 교반공정을 통한 고Fe 함유 A356 합금의 미세조직 개질)

  • Kim, Bong-Hwan;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.31 no.6
    • /
    • pp.354-361
    • /
    • 2011
  • The liquid metal shearing device was constructed and assembled with a commercial high-pressure die-caster in order to induce intensive turbulent shearing force on molten aluminum alloys. The effect of the liquid metal shearing on the microstructure and tensile properties of A356 alloys was investigated with the variation of iron content. The experimental results show that dendritic primary ${\alpha}$-Al phase was effectively modified into a equiaxed form by the liquid metal shearing. It was also found that the needle-like ${\beta}$-AlFeSi phase in a Fe containing A356 alloy was changed into a blocky shape resulting in the improved mechanical properties. Based on the mechanical properties, it was suggested that the iron content in A356 alloy could be more widely tolerated by utilizing the liquid metal shearing HPDC process.

Evaluation of Age-Hardening Characteristics of Rheo-Cast A356 Alloy by Nano/Micro Hardness Measurement (나노/마이크로 경도 측정에 의한 레오캐스트 A356 합금의 시효경화특성 평가)

  • Cho S. H.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.471-474
    • /
    • 2005
  • This study investigates the nano/microstructure, the aging response, and the mechanical/tribological properties of the eutectic regions in rheoformed A356 alloy-T5 parts using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. The aging responses of the eutectic regions in the rheoformed A356 alloys aged at $150^{\circ}C$ for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Victors hardness $(H_v)$ and indentation $(H_{IT})$ test results showed a similar trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found.

  • PDF

The Effects of Mn and Cr Additions on the Microstructure of A356 Alloys Containing Impure Fe (불순 Fe를 함유한 A356 주조합금에서 미세조직 형성에 관한 Mn과 Cr의 효과)

  • Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.128-133
    • /
    • 2005
  • The effects of Mn and Cr on the crystallization behaviors of Fe-bearing intennetallics in A356 alloy were studied. Coarse and acicular ${\beta}-Al_{5}$FeSi phase in A356-0.20wt.%Fe alloy was modified into small ${\alpha}$-Al(Fe,Mn)Si and ${\alpha}$-Al(Fe,Cr)Si phases in response to Mn and Cr addition, respectively. Increasing of Mn addition amount elevates the crystallizing temperature of ${\alpha}$-Al(Fe,Mn)Si and the Mn/Fe ratio in the ${\alpha}$-Al(Fe,Mn)Si. Cr is more effective to modify ${\beta}-Al_{5}$FeSi in comparison with Mn. ${\alpha}$-Al(Fe,Mn)Si phase had BCC/SC dual structure.

Effect of Heat Treatment on the Mechanical Properties of Investment Casting Turbo Charger Wheel using A356 Alloy (A356합금을 이용한 정밀주조 Turbo Charger Wheel의 기계적 특성에 미치는 열처리의 영향)

  • Kim, Sang-Mi;Woo, Kee-Do;Kim, Ji-Young;Kim, Sang-Hyuk;Park, Sang-Hoon;Kang, Hwang-Jin;Park, Chan-Sung
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.262-266
    • /
    • 2011
  • The aim of this study is to investigate aging behavior of A356 alloy for turbo charger part. The specimen was fabricated by investment casting. Solution heat treatment was performed at $525^{\circ}C$ for 8h and followed by aging treated at $160^{\circ}C$, $170^{\circ}C$ for 0.5~20h. And their microstructures and mechanical properties of the aged specimens were analyzed by scanning electron microscope and hardness tester, respectively. All the cast A356 alloy included eutectic Si particles. In the cast A356 alloy, eutectic Si phase mainly was formed along Chinese script phase. Vickers hardness of the cast was improved by aging treatment due to formation of ${\beta}$" phase and ${\beta}$' phase.

Microstructure and Mechanical Property of A356 for Rheocasting Using 6-Pole Electromagnetic Stirring Casting Process (6극 전자석 전자교반 레오캐스팅에 따른 A356의 조직적 / 기계적 영향분석)

  • Kim, Baek-Gyu;Roh, Jung-Suk;Bang, Hee-Jae;Heo, Min;Park, Jin-Ha;Jeon, Chung-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.61-65
    • /
    • 2020
  • Rheo-diecasting with stirring has been used in many material industries. As the 4th Industrial Revolution approaches the world, eco-friendly high-strength and light-weight materials become more important. Casting methods have been studied and used for aluminum-alloy automobile parts. This study carried out the effect analysis of the micro-structure and mechanical properties, such as yield/ultimate tensile strength, elongation, and hardness, of A356 using the 6-pole EMS (electro-magnetic stirring) casting process with a high electromagnetic force. As a result, the hardness and elongation of the A356 after T6 heat-treatment show a significant improvement, respectively, by 20% and 50%.

Effect of Shrinkage Defect on Fracture Impact Energy of A356 Cast Aluminum Alloy (A356 알루미늄 합금의 파단 충격에너지에 대한 수축공결함의 영향)

  • Chul, Hwang-Seong;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.34 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • Internal defects, such as shrinkage during casting, cause stress concentrations and initiate cracking. Therefore, it is important to understand the effects of internal defects on the mechanical properties including the impact behavior. This study evaluates the effects of internal casting defects on the impact performance of A356 Al-alloy castings. The internal shrinkage defects in the casting impact specimen are scanned using an industrial Computed Tomography (CT) scanner, and drop impact tests are performed with varing impact velocities on the A356 casting aluminium specimen ($10mm{\times}10mm$ section area) in order to locate the fracture energy under an impact load. The specimens with defects with a diameter less than 0.35 mm exhibit equivalent fracture impact energies of approximately 32 J and those with a 1.7 mm diameter defect reduced the fracture impact energy by 35%.