• Title/Summary/Keyword: A3 agonist

Search Result 503, Processing Time 0.024 seconds

Opioid Receptor Selectivity and General Pharmacology of DK1001, New Alkaloid Analgesic (알칼로이드 진통제 DK 1001의 opioid 수용체 선택성 및 일반약리)

  • Kim, Jin-Sook;Kim, Dae-Kyung;Kwon, Tae-Hyub;Yong, Chul-Soon;Ha, Jeoung-Hee;Huh, Keon;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.278-284
    • /
    • 1999
  • DK1001 is a thebain derivative, which is newly synthesized as an alkaloid analgesic. This study was designed to study effects of DK1001 on the ligands binding to the opioid receptor subtypes, and general pharmacology of DK1001. DK1001 inhibited the binding of [$^3H$]DAMGO, a selective mu-subtype agonist, to the opioid receptor of rat forebrain in a concentration-dependent manner. $EC_{50}$ of DK1001 was significantly lower than that of morphine. DK1001 inhibited the binding of 〔$^3$H〕DPDPE, a selective delta-subtype agonist concentration-dependently. DK1001(0.5 mg/kg) had no effects on behavior, body temperature, blood pressure. respiratory rate, and intestinal charcoal propulsion of mice. In addition, DK1001 did not affect on the contractilities of isolated muscle strips of aorta, ileum, and trachea of rats. These results suggest that DK1001 might be a potent analgesic without serious side effects.

  • PDF

Agonistic Activities to the Benzodiazepine Receptor by Extracts of Medicinal Plants(I) -Screening of Some Sedative Plant Extracts- (생약의 Benzodiazepine 수용체 효현활성 검색(I) -수종의 신경안정 생약 추출물에 대한 활성 검색-)

  • Ha, Jeoung-Hee;Park, Yong-Ki;Kang, Byung-Soo;Lee, Dong-Ung
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.2
    • /
    • pp.211-215
    • /
    • 1999
  • This study was aimed to evaluate an agonistic activity to benzodiazepine receptor of several medicinal plants, which have been used as sedatives in oriental medicine. Methanol extracts of medicinal plants which were used in this study inhibited the binding of $[^3H]Ro15-1788$, a selective benzodiazepine receptor antagonist to benzodiazepine receptor of rat cortices. Inhibitory activity of Cyperus rotundus was observed to be the highest among the tested medicinal plants. Methanol extracts of Cyperus rotundus and Zizypus jujuba inhibited a $[^3H]flunitrazepam$, a selective benzodiazepine receptor agonist, binding to benzodiazepine receptor. GABA significantly enhanced the inhibition of $[3H]flunitrazepam$ binding by Cyperus rotundus and Zizypus jujuba, and these positive GABA shifts supported the strong possibility of agonistic activity to benzodiazepine receptor. From these results, it may be concluded that the substance or substances with neurochemical properties characteristic of a benzodiazepine receptor agonist may be important components and contribute to the sedative property of these medicinal plants.

  • PDF

Serotonin (5-HT) Receptor Subtypes Mediate Regulation of Neuromodulin Secretion in Rat Hypothalamic Neurons

  • Chin, Chur;Kim, Seong-Il
    • Genomics & Informatics
    • /
    • v.5 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • Serotonin (5-HT), the endogenous nonselective 5-HT receptor agonist, activates the inositol-1,4,5-triphosphate/calcium $(InsP3/Ca^{2+})$ signaling pathway and exerts both stimulatory and inhibitory actions on cAMP production and neuromodulin secretion in rat hypothalamic neurons. Specific mRNA transcripts for 5-HT1A, 5-HT2C and 5-HT4 were identified in rat hypothalamic neurons. These experiments were supported by combined techniques such as cAMP and a $Ca^{2+}$ assays in order to elucidate the associated receptors and signaling pathways. The cAMP production and neuromodulin release were profoundly inhibited during the activation of the Gi-coupled 5-HT1A receptor. Treatment with a selective agonist to activate the Gq-coupled 5-HT2C receptor stimulated InsP3 production and caused $Ca^{2+}$ release from the sarcoplasmic reticulum. Selective activation of the Gs-coupled 5-HT4 receptor also stimulated cAMP production, and caused an increase in neuromodulin secretion. These findings demonstrate the ability of 5-HT receptor subtypes expressed in neurons to induce neuromodulin production. This leads to the activation of single or multiple G-proteins which regulate the $InsP3/Ca^{2+}/PLC-{\gamma}$ and adenyl cyclase / cAMP signaling pathways.

Effects of Alpha 1- and Alpha 2-Adrenoreceptor Stimulation on Galanin mRNA Expression in Primary Cultured Superior Cervical Ganglion Neurons

  • Xing, Yi;Chen, Xiuying;Liu, Zhen;Li, Hao;Liu, Huaxiang;Li, Zhenzhong
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.315-319
    • /
    • 2011
  • Galanin (Gal) is a 29-amino-acid neuropeptide which is expressed in superior cervical ganglion (SCG) neurons and plays a trophic role in the adult animal and acts as an inhibitory modulator of cholinergic and noradrenergic neurotransmission. Whether activation or inhibition of alpha-adrenoreceptors infl uences Gal mRNA expression in SCG neurons remains unknown. Here, we have evaluated the possible regulation of Gal mRNA expression with acute (4 h) and chronic (4 days) stimulation of alpha 1- and alpha 2-adrenoreceptor agonists or antagonists in primary cultured SCG neurons. The results showed that the amount of Gal mRNA expression in cultured SCG neurons increased signifi cantly after chronic stimulation with alpha 2-adrenoreceptor antagonist yohimbine compared with control SCG neurons at the same time point, whereas the amount of Gal mRNA expression decreased signifi cantly after chronic stimulation with alpha 2-adrenoreceptor agonist clonidine as compared with that in control group. All these effects were not dose-dependent on the administration of alpha 2-adrenoreceptor agonist clonidine or alpha 2-adrenoreceptor antagonist yohimbine. Alpha 1-adrenoreceptor agonist phenylephrine or antagonist prazosin chronic stimulation did not have effects on Gal mRNA expression. Acute exposure of these agents did not have effects on Gal mRNA expression. The present study showed that Gal may be regulated by activation or inhibition of alpha 2-adrenoreceptors, but not alpha 1-adrenoreceptors in sympathetic neurons.

Short-acting β2-agonist prescriptions in patients with asthma: findings from the South Korean cohort of SABINA III

  • Kwang-Ha Yoo;Sang-Ha Kim;Sang-Heon Kim;Ji-Yong Moon;Heung-Woo Park;Yoon-Seok Chang;Maarten J.H.I Beekman
    • The Korean journal of internal medicine
    • /
    • v.39 no.1
    • /
    • pp.123-136
    • /
    • 2024
  • Background/Aims: Despite short-acting β2-agonist (SABA) overuse being associated with poor asthma outcomes, data on SABA use in South Korea is scarce. Herein, we describe prescription patterns of SABA and other asthma medications in patients from the South Korean cohort of the SABA use IN Asthma (SABINA) III study. Methods: This study included patients with asthma aged ≥ 12 years, who had ≥ 3 consultations with the same healthcare provider, and medical records containing data for ≥ 12 months prior to the study visit. Patients were classified by investigator-defined asthma severity (per 2017 Global Initiative for Asthma recommendations) and practice type (primary or specialist care). Data on disease characteristics, asthma treatments, and clinical outcomes in the 12 months before the study visit were collected using electronic case report forms. Results: Data from 476 patients (mean age, 55.4 years; female, 63.0%) were analyzed. Most patients were treated by specialists (83.7%) and had moderate-to-severe asthma (91.0%). Overall, 7.6% of patients were prescribed ≥ 3 SABA canisters (defined as over-prescription). In patients prescribed SABA in addition to maintenance therapy, 47.4% were over-prescribed SABA. Most patients (95.4%) were prescribed a fixed-dose combination of an inhaled corticosteroid and a long-acting β2-agonist as maintenance therapy. Although asthma was well-controlled/partly-controlled in 91.6% of patients, 29.6% experienced ≥ 1 severe asthma exacerbation. Conclusions: SABA over-prescription was reported in nearly 50% of patients prescribed SABA in addition to maintenance therapy, underscoring the need to align clinical practices with the latest evidence-based recommendations and educate physicians and patients on appropriate SABA use.

Development of SMA-based Wireframe Structure for 2D Shape Display (2차원 형상 제시를 위한 SMA에 기반한 와이어프레임 구조의 개발)

  • Chu, Yong-Ju;Song, Jae-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.82-88
    • /
    • 2008
  • This paper proposes a novel method of 2 dimensional shape display. Shape displays allow us to feel tile actual volume of the object, unlike conventional 2D visual displays of 3D objects. The proposed method employs a wireframe structure to present 2D or 3D objects. The wireframe is composed of small units driven by shape memory alloy (SMA) actuators. The drive unit is analogous to the agonist-antagonist system of animal musculoskeletal systems, where the SMA actuators serve as agonist and antagonist muscles. The force in the SMA actuator is controlled by electrical current. The drive unit is equipped with the locking mechanism so that it can sustain the external force exerted by the user as well as the own weight of the wireframe structure. By controlling the current into the SMA actuator and locking mechanism, we can control the angle of the drive unit. A chain of drive units enables presentation of 2 dimensional objects. 3 dimensional presentations are possible by collecting the chains of drive units.

Characteristics of $A_1\;and\;A_2$ Adenosine Receptors upon the Acetylcholine Release in the Rat Hippocampus

  • Kim, Do-Kyung;Lee, Young-Soo;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.31-39
    • /
    • 1998
  • As it has been reported that the depolarization induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1$ adenosine heteroreceptor and various lines of evidence suggest the $A_2$ adenosine receptor is present in the hippocampus. The present study was undertaken to delineate the role of adenosine receptors on the hippocampal ACh release. Slices from the rat hippocampus were equilibrated with $[^3H]choline$ and then the release amount of the labelled product, $[^3H]ACh$, which was evoked by electrical stimulation (rectangular pulses, 3 Hz, 2 ms, 24 mA, $5\;V/cm^{-1}$, 2 min), was measured, and the influence of various adenosine receptor-related agents on the evoked tritium outflow was investigated. And also, the drug-receptor binding assay was performed in order to confirm the presence of $A_1$ and $A_2$ adenosine receptors in the rat hippocampus. N-ethylcarboxamidoadenosine (NECA), a potent adenosine receptor agonist with nearly equal affinity at $A_1$ and $A_2$ adenosine receptors, in concentrations ranging from $1{\sim}30\;{\mu}M$, decreased the electrically-evoked $[^3H]ACh$ release in a concentration-dependent manner without affecting the basal rate of release. And the effect of NECA was significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 2 ${\mu}M$), a selective $A_1$ adenosine receptor antagonist, but was not influenced by 3,7-dimethyl-1-propargylxanthine (DMPX, 5 ${\mu}M$), a specific $A_2$ adenosine receptor antagonist. $N^6-cyclopentyladenosine$ (CPA), a selective $A_1$ adenosine receptor agonist, in doses ranging from 0.1 to 10 ${\mu}M$, reduced evoked $[^3H]ACh$ release in a dose-dependent manner without the change of the basal release. And the effect of CPA was significantly inhibited by 2 ${\mu}M$ DPCPX treatment. 2-P-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680C), a potent $A_2$ adenosine receptor agonist, in concentrations ranging from 0.1 to 10 ${\mu}M$, did not alter the evoked ACh release. In the drug-receptor binding assay, the binding of $[^3H]2-chloro-N^6-cyclopentyladenosine$ ($[^3H]$CCPA) to the $A_1$ adenosine receptor of rat hippocampal membranes was inhibited by CPA ($K_i$ = 1.22 nM), NECA ($K_i=10.17 nM$) and DPCPX ($K_i=161.86 nM$), but not by CGS-21680C ($K_i=2,380 nM$) and DMPX ($K_i=22,367 nM$). However, the specific binding of $[^3H]CGS-21680C$ to the $A_2$ adenosine receptor was not observed. These results suggest that the $A_1$ adenosine heteroreceptor play an important role in evoked ACh release, but the presence of $A_2$ adenosine receptor is not confirmed in this study.

  • PDF

Physiological Review of Weakness in Patients with Hemiparesis (편부전마비 환자에서의 근육약화에 대한 생리학적 고찰)

  • Kim, Jong-Man;Kim, Tack-Hoon
    • Physical Therapy Korea
    • /
    • v.3 no.2
    • /
    • pp.84-94
    • /
    • 1996
  • This paper reviews physiological changes in the nervous system of patients with hemiparesis that may contribute to muscle weakness. The discussion includes the important role that alterations in the physiology of motor units, notably changes in firing rates and muscle fiber atrophy, play in the manifestation of muscle weakeness. This role is compared with the lesser role that spasticity of the antagonist muscle group appears to play in determining the weakness of agonist muscles. The contribution of other factors that result in mechanical restraint of the agonist by the antagonist is discussed relative to muscle weakness in patients with hemiparesis. More studies on patients with hemiparesis are required to assess what role muscle strength training should play in rehabiliting patients after a stroke.

  • PDF

Inverse Agonists at $A_1$ Adenosine Receptors in Rat Cerebral Cortex (흰쥐의 뇌의$A_1$ 아데노신 수용체에 작용하는 역효현제에 관한 연구)

  • Park, Kyung-Sun;Yang, Wan-Suk;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 1996
  • According to the traditional receptor model, competitive antagonists share with agonists the ability to bind to a common site on receptors, but they are different from agonist in that they cannot trigger the biological response-i.e., they lack intrinsic efficacy. Recent findings extend the model by indicating that not all antagonists display an intrinsic efficacy of zero but that some display 'inverse agonism'. In the present study we studied the inverse agonism at $A_1$ adenosine receptors in membranes prepared from rat cerebral cortex. Eight commercially available $A_1$ adenosine receptor antagonists (CGS-15943, ADPX, CPT, DPCPX, DPX, N-0840, PACPX and 8-PT) were screened for inverse agonism by measuring the extent of $[^{35}S]guanosine-5'-({\gamma}-thio)$ triphosphate $([^{35}S]GTP_{\gamma}S)$ binding to G proteins. The agonist-induced stimulation of $[^{35}S]GTP_{\gamma}S$ bindings was completely blocked in the presence of $A_1$ adenosine receptor antagonists. Under optimal conditions, two types of antagonists could be distinguished. Seven antagonists including DPCPX decreased the basal $[^{35}S]GTP_{\gamma}S$ binding in the absence of agonist, displaying inverse agonist activity. One (CGS-15943) had no effect on the basal bindings. N-ethylmaleimide treatment reduced the basal bindings as well as agonist-mediated stimulation of $[^{35}S]GTP_{\gamma}S$ bindings, indicating that a substantial amount of this binding reflects an activated state of the C proteins. In good agreement with these findings, 0.1 mM GTP decreased the apparent affinity of the receptors for the agonist PIA, increased that for DPCPX, and had no effect on that for CGS-15943.

  • PDF

Peripheral metabotropic glutamate receptors differentially modulate mustard oil-induced craniofacial muscle pain in lightly anesthetized rats

  • Lee, Min-K.;Yang, Gwi-Y.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.97-103
    • /
    • 2008
  • The present study investigated the role of peripheral group I, II, and III metabotropic glutamate receptors (mGluRs) in mustard oil (MO)-induced nociceptive response in the masseter muscles of lightly anesthetized rats. Experiments were carried out on male Sprague-Dawley rats weighing 300-350 gm. After initial anesthesia with sodium pentobarbital (40 mg/kg, i.p.), one femoral vein was cannulated and connected to an infusion pump for intravenous infusion of sodium pentobarbital. The rate of infusion was adjusted to provide a constant level of anesthesia. MO (30 ${\mu}L$) was injected into the mid-region of the left masseter muscle via a 30-gauge needle over 10 seconds. After 30 mL injection of 5, 10, 15, or 20% MO into the masseter muscle, total number of hindpaw-shaking behavior was monitored. Intramuscular administration of MO significantly produced hindpawshaking behavior in a dose-dependent manner, as compared with the vehicle (mineral oil)-treated group. Intramuscular pretreatment with 10 or 100 ng DHPG, a group I mGluRs agonist, enhanced MO-induced hindpaw-shaking behavior, while APDC (20 or 200 ${\mu}g$), a group II mGluRs agonist, or L-AP4 (2 ${\mu}g$), a group III mGluRs agonist, significantly reduced MO-induced nociceptive behavior. The antinociception, produced by group II or III mGluRs agonists, was abolished by pretreatment with LY341495, a group II mGluRs antagonist, or CPPG, a group III mGluRs antagonist, res-pectively. Based on these observations, peripheral mGluRs differentially modulated MO-induced nociceptive behavior response in the craniofacial muscle pain and peripheral group II and III mGluRs agonists could be used in treatment of craniofacial muscle nociception.