• Title/Summary/Keyword: A2B adenosine receptor

Search Result 29, Processing Time 0.023 seconds

The Role of Adenosine Receptor on Norepinephrine Release from Ischemic-Induced Rat Hippocampus (허혈이 유발된 흰쥐 해마에서 Norepinephrine 유리에 미치는 Adenosine 수용체의 역할)

  • Chung, Jong-Hoon;Choi, Bong-Kyu
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.139-150
    • /
    • 1996
  • The effects of adenosine analogues on the electrically-evoked norepinephrine(NE) release and the influence of ischemia on the effects were studied in the rat hippocampus. Slices from the rat hippocampus were equilibrated with $0.1{\mu}M$ $[^3H]-norepinephrine$ and the release of the labelled product, $[^3H]-NE$, was evoked by electrical stimulation(3 Hz, 2 ms, 5 $VCm^{-1}$ and rectangular pulses for 90 sec), and the influence of various agents on the evoked tritium-outflow was investigated. Ischemia(15min with 95% $N_2$ +5% $CO_2$) increased both the basal and evoked NE release. These increases were abolished by addition of glucose into the superfused medium, and they were significantly inhibited either by $0.3\;{\mu}M$ tetrodotoxin pretreatment or by removing $Ca^{++}$ in the medium. MK-801$(1{sim}10\;{\mu}M)$, a specific NMDA receptor antagonist, and glibenclamide $(1\;{\mu}M)$, a $K^+-channel$ inhibitor, neither alter the evoked NE release nor affected the Ischemia-Induced increases in NE release. However, polymyxin B(0.03 mg), a specific protein kinase C inhibitor, inhibited the effect of ischemia on the evoked NE release. Adenosine and $N^6-cyclopentyladenosine$ decreased the NE release in a dose-dependent manner in ischemic condition, though the magnitude of inhibition was far less than those in normal (normoxic) condition. Also the treatment with $5{\mu}M$ DPCPX, a potent $A_1-adenosine$ receptor antagonist did not affect the ischemia-effect. These results suggest that the evoked-NE release is potentiated by ischemia, and this process being most probably mediated by protein kinase C, and that the decrease of NE release mediated through $A_1-adenosine$ receptor is significantly inhibited in ischemic state.

  • PDF

The Regulation of p27Kip-1 and Bcl2 Expression Is Involved in the Decrease of Osteoclast Proliferation by A2B Adenosine Receptor Stimulation

  • Kim, Hong Sung;Lee, Na Kyung
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.327-332
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be a regulator of bone homeostasis, but the regulatory mechanism of A2BAR on the osteoclast proliferation are poorly explored. Recently, we have shown that stimulation with BAY 60-6583, a specific agonist of A2BAR, significantly reduced macrophage-colony stimulating factor (M-CSF)-induced osteoclast proliferation by inducing cell cycle arrest at G1 phase and increasing the apoptosis of osteoclasts. The objective of this study was to investigate the regulatory mechanisms of cell cycle and apoptosis by A2BAR stimulation. The expression of A2BAR and M-CSF receptor, c-Fms, was not changed by A2BAR stimulation whereas M-CSF effectively induced c-Fms expression during osteoclast proliferation. Interestingly, A2BAR stimulation remarkably increased the expression of $p27^{Kip-1}$, a cell cycle inhibitor, but the expression of Cyclin D1 and cdk4 was not affected. In addition, while BAY 60-6583 treatment reduced the expression of Bcl2, an anti-apoptotic oncogene, it failed to regulate the expression of Bax, a pro-apoptotic marker. Taken together, these results imply that the increase of $p27^{Kip-1}$ inducing cell cycle arrest at G1 phase and the decrease of Bcl2 inducing anti-apoptotic response by A2BAR stimulation contribute to the down-regulation of osteoclast proliferation.

cAMP-Dependent Signalling is Involved in Adenosine-Stimulated $Cl^-$ Secretion in Rabbit Colon Mucosa

  • Oh, Sae-Ock;Kim, Eui-Yong;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.521-527
    • /
    • 1998
  • An important property of the intestine is the ability to secrete fluid. The intestinal secretion is regulated by a number of substances including vasoactive intestinal peptide (VIP), ATP and different inflammatory mediators. One of the most important secretagogues is adenosine during inflammation. However, the controversy concerning the underlying mechanism of adenosine-stimulated $Cl^-$ secretion in intestinal epithelial cells still continues. To investigate the effect of adenosine on $Cl^-$ secretion and its underlying mechanism in the rabbit colon mucosa, we measured short circuit current ($I_{SC}$) under automatic voltage clamp with DVC-1000 in a modified Ussing chamber. Adenosine, when added to the basolateral side of the muocsa, increased $I_{SC}$ in a dose-dependent manner. The adenosine-stimulated $I_{SC}$ response was abolished when $Cl^-$ in the bath solution was replaced completely with gluconate. In addition, the $I_{SC}$ response was inhibited by a basolateral Na-K-Cl cotransporter blocker, bumetanide, and by apical $Cl^-$ channel blockers, dephenylamine-2-carboxylate (DPC), 5-nitro-2-(3-phenyl-propylamino)-benzoate (NPPB), glibenclamide. Amiloride, an epithelial $Na^+$ channel blocker, and 4,4-diisothiocyanato-stilbene-2,2-disulphonate (DIDS), a $Ca^{2+}-activated$ $Cl^-$ channel blocker, had no effect. In the mucosa pre-stimulated with forskolin, adenosine did not show any additive effect, whereas carbachol resulted in a synergistic potentiation of the $I_{SC}$ response. The adenosine response was inhibited by 10 ${\mu}M$ H-89, an inhibitor of protein kinase A. These results suggest that the adenosine-stimulated $I_{SC}$ response is mediated by basolateral to apical $Cl^-$ secretion through a cAMP-dependent $Cl^-$ channel. The rank order of potencies of adenosine receptor agonists was $5'-(N-ethylcarboxamino)adenosine(NECA)>N^6-(R-phenylisopropyl)adenosine(R-$ PIA)>2-[p-(2-carbonylethyl)-phenyl-ethylamino]-5'-N-ethylcarboxaminoadenosine(CGS21680). From the above results, it can be concluded that adenosine interacts with the $A_{2b}$ adenosine receptor in the rabbit colon mucosa and a cAMP-dependent signalling mechanism underlies the stimulation of $Cl^-$ secretion.

  • PDF

The Role of Adenosine Receptor on Acetylcholine Release from Ischemic-Induced Rat Hippocampus (허혈이 유발된 흰쥐 해마에서 Acetylcholine 유리에 미치는 Adenosine 수용체의 역할)

  • Choi, Bong-Kyu;Kim, Do-Kyung;Kang, Hun;Jeon, Jae-Min;Kang, Yeon-Wook
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.127-138
    • /
    • 1996
  • The effects of adenosine analogues on the electrically-evoked acetylcholine(ACh) release and the influence of ischemia on the effects were studied in the rat hippocampus. Slices from the rat hippocampus were equilibrated with $0.1{\mu}M$ $[^3H]-choline$ and the release of the labelled product, $[^3H]-ACh$, was evoked by electrical stimulation(3 Hz, 2 ms, 5 $VCm^{-1}$ and rectangular pulses for 2 min), and the influence of various agents on the evoked tritiumoutflow was investigated. Ischemia(10 min with 95% $N_2$ + 5% $CO_2$) increased both the basal and evoked ACh release. These increases were abolished by glucose addition into the superfused medium, and they significantly inhibited either by 0.1 & $0.3{\mu}M$ TTX pretreatment or by removing $Ca^{++}$ in the medium. MK-801($1{\sim}10{\mu}M$), a specific NMDA receptor antagonist, and glibenclamide $(1{\mu}M)$, a $K^+-channel$ inhibitor, did not alter the evoked ACh release and nor did they affect the ischemia-induced increases In ACh release. However, polymyxin B(0.03 mg), a specific protein kinase C inhibitor, significantly inhibited the effects of ischemia on the evoked ACh release. Adenosine and $N^6-cyclopentyladenosine$ decreased the ACh release in a dose dependent manner in ischemic condition, though the magnitude of inhibition was far less than those in normal(normoxic) condition. However, the treatment with $5{\mu}M$ DPCPX, a potent $A_1-adenosine$ receptor antagonist, potentiated the ischemia-effect. These results indicate that the evoked-ACh release is potentiated by ischemia, and this process being most probably mediated by protein kinase C, and that the decreased effect of ACh release mediated by $A_1-adenosine$ receptor is significantly inhibited in ischemic state.

  • PDF

Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection

  • Singh, Lovedeep;Kulshrestha, Ritu;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.225-234
    • /
    • 2018
  • Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of $K_{ATP}$ channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.

Effect of Protein Kinase C on Norepinephrine Release in the Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리에 미치는 Protein Kinase C 의 영향)

  • Kim, Do-Kyung;Lee, Young-Soo;Choi, Bong-Kyu
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.145-152
    • /
    • 1995
  • The effects and interactions of $4{\beta}-phorbol$ 12,13-dibutyrate(PDB) and polymyxin B(PMB) with adenosine on the electrically-evoked norepinephrine (NE) release were studied in the rat hippocampus. Slices from the rat hippocampus were equilibrated with $^3H-noradrenaline$ and the release of the labelled product, $^3H-NE$, which evoked by electrical stimulation$(3\;Hz,\;2\;ms,\;5\;VCm^{-1},\;rectangular\;pulses)$ was measured. PDB$(0.3{\sim}10\;{\mu}M)$, a selective protein kinase C(PKC) activator, increased the evoked NE release in a dose related fashion while increasing the basal rate of release. And the effects of $1\;{\mu}M$ PDB were significantly inhibited by $0.3\;{\mu}M$ tetrodotoxin(TTX) pretreatment or $Ca^{++}-free$ medium. $PMB(0.03{\sim}1\;mg)$, a specific PKC inhibitor, decreased the NE release in a dose dependent manner while increasing the basal rate of release. Adenosine $(1{\sim}10\;{\mu}M)$ decreased the NE release without changing the basal rate of release, and this effect was significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine$(2\;{\mu}M)$, a selective $A_1-receptor$ antagonist, treatment. Also, adenosine effects were significantly inhibited by PDB-and PMB-pretreatment. These results suggest that the PKC plays a role in the NE release in the rat hippocampus and might be participated in a post-receptor mechanism of the $A_1-adenosine$ receptor.

  • PDF

Effect of Baclofen on the Cholinergic Nerve Stimulation in Isolated Rat Detrusor (흰쥐의 적출배뇨근에서 baclofen의 콜린성신경 억제작용)

  • Lee, Kwang-Youn;Lee, Keun-Mi;Choi, Eun-Mee;Choi, Hyoung-Chul;Ha, Jeoung-Hee;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.12 no.2
    • /
    • pp.246-259
    • /
    • 1995
  • This study aimed to investigate the mechanism of action of baclofen on the detrusor muscle isolated from rat. Rats (Sprague-Dawley) were sacrificed by decapitation and exsanguination. Horizontal muscle strips of $2mm{\times}15mm$ were prepared for isometric myography in isolated muscle chamber bubbled with 95% / 5%-$O_2$ / $CO_2$ at $37^{\circ}C$, and the pH was maintained at 7.4. Detrusor strips contracted responding to the electrical field stimulation (EFS) by 2 Hz, 20 msec, monophasic square wave of 60 VDC. The initial peak of EFS-Induced contraction was tended to be suppresed by ${\alpha},{\beta}$-methylene-adenosine 5'-triphosphate (mATP), a partial agonist of purinergic receptor, and baclofen, a $GABA_B$ receptor agonist (statistically nonsignificant). The late sustained contraction by EFS was suppressed significantly (p < 0.05) by additions of atropione, a cholinergic muscarinic receptor antagonist and baclofen. The adenosine 5'-triphosphate-induced contraction was completely abolished by mA TP but not by baclofen. In the presence of atropine, the subsequent addition of acetylcholine could not contract the muscle strips: but the addition of acetylcholine in the presence of baclofen evoked a contraction to a remarkable extent. These results suggest that in the condition of present study, the cholinergic innervation may play a more important role than the purinergic one, and baclofen suppresses the contractility of rat detrusor by the stimulation of the $GABA_B$ receptors to inhibit the release of neurotransmitter from the cholinergic nerve ending.

  • PDF

Role of Adenosine and Protein Kinase C in the Anti-ischemic Process of Ischemic Preconditioning in Rat Heart (허혈전처치의 허혈심장 보호과정에서 Adenosine 및 Protein Kinase C의 역할)

  • You, Ho-Jin;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 1996
  • The protective effect of 'ischemic preconditioning (IP)'on ischemia-reperfusion injury of heart has been reported in various animal species, but the mechanism is unclear. In an attempt to elucidate the mechanism of IP, we examined the effects of blockers against adenosine and protein kinase C in preconditioned heart of rat. The hearts perfused with oxygen-saturated Krebs-Henseleit solution by Langendorff method were exposed to 30 min global ischemia followed by 20 min reperfusion. IP was performed with three episodes of 5 min ischcmia and 5 min reperfusion just before ischemia-reperfusion. IP prevented the depression of contractile function and the myocardial contracture in the ischemic-reperfused heart and reduced the release of lactate dehydrogenase during the reperfusion period. Polymyxin B, chelerythrine and colchicine, PKC inhibitors, attenuated almost completely the anti-ischemic effect of IP, while adenosine receptor antagonists did not. These results indicate that PKC may be a crucial intracellular mediator in anti-ischemic action of IP in ischemic-reperfused rat heart, while adenosine may not be involved in the mechanism of IP.

  • PDF

Efficiency of PDNR (Polydeoxyribonucleotide) extraction from various plant species and its in vitro wound healing activity (다양한 식물에서의 PDRN(Polydeoxyribonucleotide) 추출 수율 비교 및 상처치유 효능 분석)

  • Song, Mi-Hee;Choi, Moon-Hyeok;Jeong, Jin-Hyoung;Lee, Sang-Sik;Jeong, Woo-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.387-395
    • /
    • 2022
  • PDRN (Polydeoxyribonucleotide) is a DNA-derived polymer that promotes self-renewal of damaged cells and tissues as a tissue regeneration active material. PDRN is a DNA fragment cut into small sizes by various physical or chemical methods. When administered to the body, PDRN binds and stimulates the adenosine A2A receptor on the surface of tissue cells to promote cell regeneration, accelerate wound healing, and reduce pain. Although PDRN is prepared from testis or semen of fish in most cass, PDRN extraction from various plants species was performed in the present study. Among 7 tested plant species, the highest DNA yield and purity was obtained form mugwort (Chrysanthemum coronarium, C.c), followed by broccoli (Brassica oleracea, B.o). Then, we evaluated the in vitro wound healing capacity of PDRNs prepared from these two selected plants. PDRN from C.c and B.o. significantly stimulated the wound healing process at ㎍/ml range. The present study suggests that PDRN from plant species can be an effective alternative to PDRN from marine organism.

Presynaptic Mechanism Underlying Regulation of Transmitter Release by G Protein Coupled Receptors

  • Takahashi, Tomoyuki;Kajikawa, Yoshinao;Kimura, Masahiro;Saitoh, Naoto;Tsujimoto, Tetsuhiro
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.69-76
    • /
    • 2004
  • A variety of G protein coupled receptors (GPCRs) are expressed in the presynaptic terminals of central and peripheral synapses and play regulatory roles in transmitter release. The patch-clamp whole-cell recording technique, applied to the calyx of Held presynaptic terminal in brainstem slices of rodents, has made it possible to directly examine intracellular mechanisms underlying the GPCR-mediated presynaptic inhibition. At the calyx of Held, bath-application of agonists for GPCRs such as $GABA_B$ receptors, group III metabotropic glutamate receptors (mGluRs), adenosine $A_1$ receptors, or adrenaline ${\alpha}2$ receptors, attenuate evoked transmitter release via inhibiting voltage-activated $Ca^{2+}$ currents without affecting voltage-activated $K^+$ currents or inwardly rectifying $K^+$ currents. Furthermore, inhibition of voltage-activated $Ca^{2+}$ currents fully explains the magnitude of GPCR-mediated presynaptic inhibition, indicating no essential involvement of exocytotic mechanisms in the downstream of $Ca^{2+}$ influx. Direct loadings of G protein ${\beta}{\gamma}$ subunit $(G{\beta}{\gamma})$ into the calyceal terminal mimic and occlude the inhibitory effect of a GPCR agonist on presynaptic $Ca^{2+}$ currents $(Ip_{Ca})$, suggesting that $G{\beta}{\gamma}$ mediates presynaptic inhibition by GPCRs. Among presynaptic GPCRs glutamate and adenosine autoreceptors play regulatory roles in transmitter release during early postnatal period when the release probability (p) is high, but these functions are lost concomitantly with a decrease in p during postnatal development.