• Title/Summary/Keyword: A.I: Artificial Intelligence

Search Result 284, Processing Time 0.03 seconds

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.

A Preliminary Discussion on Policy Decision Making of AI in The Fourth Industrial Revolution (4차 산업혁명시대 인공지능 정책의사결정에 대한 탐색적 논의)

  • Seo, Hyung-Jun
    • Informatization Policy
    • /
    • v.26 no.3
    • /
    • pp.3-35
    • /
    • 2019
  • In the fourth industrial revolution age, because of advance in the intelligence information technologies, the various roles of AI have attracted public attention. Starting with Google's Alphago, AI is now no longer a fantasized technology but a real one that can bring ripple effect in entire society. Already, AI has performed well in the medical service, legal service, and the private sector's business decision making. This study conducted an exploratory analysis on the possibilities and issues of AI-driven policy decision making in the public sector. The three research purposes are i) could AI make a policy decision in public sector?; ii) how different is AI-driven policy decision making compared to the existing methods of decision making?; and iii) what issues would be revealed by AI's policy decision making? AI-driven policy decision making is differentiated from the traditional ways of decision making in that the former is represented by rationality based on sufficient amount of information and alternatives, increased transparency and trust, more objective views for policy issues, and faster decision making process. However, there are several controversial issues regarding superiority of AI, ethics, accountability, changes in democracy, substitution of human labor in the public sector, and data usage problems for AI. Since the adoption of AI for policy decision making will be soon realized, it is necessary to take an integrative approach, considering both the positive and adverse effects, to minimize social impact.

Performance Comparison of Reinforcement Learning Algorithms for Futures Scalping (해외선물 스캘핑을 위한 강화학습 알고리즘의 성능비교)

  • Jung, Deuk-Kyo;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.697-703
    • /
    • 2022
  • Due to the recent economic downturn caused by Covid-19 and the unstable international situation, many investors are choosing the derivatives market as a means of investment. However, the derivatives market has a greater risk than the stock market, and research on the market of market participants is insufficient. Recently, with the development of artificial intelligence, machine learning has been widely used in the derivatives market. In this paper, reinforcement learning, one of the machine learning techniques, is applied to analyze the scalping technique that trades futures in minutes. The data set consists of 21 attributes using the closing price, moving average line, and Bollinger band indicators of 1 minute and 3 minute data for 6 months by selecting 4 products among futures products traded at trading firm. In the experiment, DNN artificial neural network model and three reinforcement learning algorithms, namely, DQN (Deep Q-Network), A2C (Advantage Actor Critic), and A3C (Asynchronous A2C) were used, and they were trained and verified through learning data set and test data set. For scalping, the agent chooses one of the actions of buying and selling, and the ratio of the portfolio value according to the action result is rewarded. Experiment results show that the energy sector products such as Heating Oil and Crude Oil yield relatively high cumulative returns compared to the index sector products such as Mini Russell 2000 and Hang Seng Index.

Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images (기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정)

  • Sejeong Bae ;Bokyung Son ;Taejun Sung ;Yeonsu Lee ;Jungho Im ;Yoojin Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1009-1029
    • /
    • 2023
  • Urban trees play a vital role in urban ecosystems,significantly reducing impervious surfaces and impacting carbon cycling within the city. Although previous research has demonstrated the efficacy of employing artificial intelligence in conjunction with airborne light detection and ranging (LiDAR) data to generate urban tree information, the availability and cost constraints associated with LiDAR data pose limitations. Consequently, this study employed freely accessible, high-resolution multispectral satellite imagery (i.e., Sentinel-2 data) to estimate fractional tree canopy cover (FTC) within the urban confines of Suwon, South Korea, employing machine learning techniques. This study leveraged a median composite image derived from a time series of Sentinel-2 images. In order to account for the diverse land cover found in urban areas, the model incorporated three types of input variables: average (mean) and standard deviation (std) values within a 30-meter grid from 10 m resolution of optical indices from Sentinel-2, and fractional coverage for distinct land cover classes within 30 m grids from the existing level 3 land cover map. Four schemes with different combinations of input variables were compared. Notably, when all three factors (i.e., mean, std, and fractional cover) were used to consider the variation of landcover in urban areas(Scheme 4, S4), the machine learning model exhibited improved performance compared to using only the mean of optical indices (Scheme 1). Of the various models proposed, the random forest (RF) model with S4 demonstrated the most remarkable performance, achieving R2 of 0.8196, and mean absolute error (MAE) of 0.0749, and a root mean squared error (RMSE) of 0.1022. The std variable exhibited the highest impact on model outputs within the heterogeneous land covers based on the variable importance analysis. This trained RF model with S4 was then applied to the entire Suwon region, consistently delivering robust results with an R2 of 0.8702, MAE of 0.0873, and RMSE of 0.1335. The FTC estimation method developed in this study is expected to offer advantages for application in various regions, providing fundamental data for a better understanding of carbon dynamics in urban ecosystems in the future.

Designing an App Inventor Curriculum for Computational Thinking based Non-majors Software Education (컴퓨팅 사고 기반의 비전공자 소프트웨어 교육을 위한 앱 인벤터 교육과정 설계)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.1
    • /
    • pp.61-66
    • /
    • 2017
  • As the fourth industrial revolution becomes more popular and advanced services such as artificial intelligence and Internet of Things technology are widely commercialized, awareness of the importance of software is spreading. Recently, software education has been taught not only in elementary school and college but also in college. Also, there is a growing interest in computational thinking needed to solve problems through computing methodology and model. The purpose of this study is to design an app inventor course for non-majors software education based on computational thinking. As a result of the study, six detailed competencies of computational thinking were derived, and six detailed competencies were mapped to the app inventor learning elements. In addition, based on the computational thinking modeling, I designed an app inventor class for students who participated in IT curriculum of university liberal arts curriculum.

Trend Analysis of IoT Technology Using Open Source (오픈소스를 이용한 IoT 기술의 동향 분석)

  • Kwon, Yong-Kwang;Kim, Sun-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.65-72
    • /
    • 2020
  • The Internet of Things(IoT) is to build a hyper-connected society through interconnection, and on this basis, to improve the quality of life and productivity, including solving social problems, and to become the next growth engine for the nation. The open common eco-system pursued by the IoT can start with the under- standing of the word 'open'. The IoT can achieve the expected effect of lowering the barriers to entry of technology development, and in these changes, OSSW and OSHW play a very important role in accelerating IoT eco-system maturity and breaking the boundaries between industries to promote convergence. Recently, it has developed into an intelligent IoT that combines artificial intelligence (AI) with the connectivity of the IoT. Here, I will analyze the direction of development of the IoT through understanding and analysis of open source.

Verification of the effectiveness of AI education for Non-majors through PJBL-based data analysis (PJBL기반 데이터 분석을 통한 비전공자의 AI 교육 효과성 검증)

  • Baek, Su-Jin;Park, So-Hyun
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.201-207
    • /
    • 2021
  • As artificial intelligence gradually expands into jobs, iIt is necessary to nurture talents with AI literacy capabilities required for non-majors. Therefore, in this study, based on the necessity and current status of AI education, AI literacy competency improvement education was conducted for non-majors so that AI learning could be sustainable in relation to future majors. For non-majors at University D, problem-solving solutions through project-based data analysis and visualization were applied over 15 weeks, and the AI ability improvement and effectiveness of learners before and after education were analyzed and verified. As a result, it was possible to confirm a statistically significant level of positive change in the learners' data analysis and utilization ability, AI literacy ability, and AI self-efficacy. In particular, it not only improved the learners' ability to directly utilize public data to analyze and visualize it, but also improved their self-efficacy to solve problems by linking this with the use of AI.

Smart Vehicle Security Vulnerability Analysis and Solution Support (스마트 자동차 네트워크의 보안취약점 분석 및 해결방안 마련)

  • Kim, Jin-Mook;Moon, Jeong-Kyung;Hwang, Deuk-Young
    • Convergence Security Journal
    • /
    • v.18 no.3
    • /
    • pp.69-76
    • /
    • 2018
  • One of the most remarkable technologies in the era of the 4th industrial revolution is the interest in the field of smart cars. In the near future, it will not only be possible to move to a place where you want to ride a smart car, but smart cars, including artificial intelligence elements, can avoid sudden car accidents. However, as the field of smart automobiles develops, the risks are expected to increase. Therefore, based on the understanding of security vulnerabilities that may occur in smart car networks, we can apply safe information security technology using FIDO and attribute-based authorization delegation technique to provide smart car control technology that is safe and secure. I want to. In this paper, we show that the proposed method can solve security vulnerabilities by using secure smart car control technology. We will further study various proposals to solve security vulnerabilities in the field of smart car networks through future research.

  • PDF

Pattern Analysis of Apartment Price Using Self-Organization Map (자기조직화지도를 통한 아파트 가격의 패턴 분석)

  • Lee, Jiyoung;Ryu, Jae Pil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.27-33
    • /
    • 2021
  • With increasing interest in key areas of the 4th industrial revolution such as artificial intelligence, deep learning and big data, scientific approaches have developed in order to overcome the limitations of traditional decision-making methodologies. These scientific techniques are mainly used to predict the direction of financial products. In this study, the factors of apartment prices, which are of high social interest, were analyzed through SOM. For this analysis, we extracted the real prices of the apartments and selected a total of 16 input variables that would affect these prices. The data period was set from 1986 to 2021. As a result of examining the characteristics of the variables during the rising and faltering periods of the apartment prices, it was found that the statistical tendencies of the input variables of the rising and the faltering periods were clearly distinguishable. I hope this study will help us analyze the status of the real estate market and study future predictions through image learning.

Development of Intelligent CCTV System Using CNN Technology (CNN 기술을 사용한 지능형 CCTV 개발)

  • Do-Eun Kim;Hee-Jin Kong;Ji-Hu Woo;Jae-Moon Lee;Kitae Hwang;Inhwan Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.99-105
    • /
    • 2023
  • In this paper, an intelligent CCTV was designed and experimentally developed by using an IOT device, Raspberry Pi, and artificial intelligence technology. Object Detection technology was used to detect the number of people on the CCTV screen, and Action Detection technology provided by OpenPose was used to detect emergency situations. The proposed system has a structure of CCTV, server and client. CCTV uses Raspberry Pi and USB camera, server uses Linux, and client uses iPhone. Communication between each subsystem was implemented using the MQTT protocol. The system developed as a prototype could transmit images at 2.7 frames per second and detect emergencies from images at 0.2 frames per second.