• 제목/요약/키워드: A.I: Artificial Intelligence

검색결과 287건 처리시간 0.027초

인공지능 스피커의 교육적 활용에서의 윤리적 딜레마 (Ethical Dilemma on Educational Usage of A.I. Speaker)

  • 한정혜;김종욱
    • 창의정보문화연구
    • /
    • 제7권1호
    • /
    • pp.11-19
    • /
    • 2021
  • 인공지능 국가전략이 발표되면서 인공지능의 교육에 대한 다양한 정책들이 제안되고 있고 교사를 대상으로 하는 인공지능융합교육도 활발히 추진되고 있다. 또한 인공지능 스피커는 각 가정에 판매 및 보급이 되고 있는 실정이고, 인공지능 스피커의 교육적 활용 현장연구들이 시작되고 있다. 이 연구에서는 인공지능 윤리에서 인공지능 스피커가 발생시킬 논란이 될 문제들을 살펴보고, 가정이나 학교에서 인공지능 스피커가 활용될 때 발생할 수 있는 윤리적 딜레마를 도출해보고자 한다. 이 딜레마는 인공지능 스피커에 대한 집단별 도덕적 판단력 수준 측정 MCT(Moral Competence Test)에 활용할 수 있을 것이다.

창작·예술 분야의 생성형 aI 활용 방법에 대한 연구 (A Study on the use of generative AI in creative and artistic fields)

  • 이동후
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.569-572
    • /
    • 2023
  • 최근 하루가 다르게 발전하고 있는 생성형 AI가 창작과 예술 분야에 어떤 영향을 미칠 수 있는지, 새롭게 등장하고 있는 다양한 분야에서 활용 가능한 획기적인 기능 등을 살펴보고 이를 바탕으로 새로운 창작 방향을 제시할 수 있는 방법들을 살펴보려 한다. 최근, 작곡가와 소설가들은 물론, 디지털 아티스트들까지도 생성형 AI를 활용하여 독특한 음악, 글, 그리고 이미지를 창조하는데 성공했다는 사례들이 속속 드러나고 있고 영상, 게임, 웹툰 등 많은 산업현장에서 직접적인 활용방법에 대한 연구결과가 등장하고 실제 적용 사례도 늘어나고 있다. 이미지 생성기인 미드저니와 스테이블디퓨전 같은 도구들은 혁신적인 방법으로 빠르게 높은 퀄리티의 이미지를 생성하고 다양한 아이디어를 제공 받을 수 있는 도구로 창작과 예술 분야에서 큰 관심을 받고 있다. 이러한 발전은 창작과 예술 분야에서 생성형 AI의 무한한 가능성을 보여주는 한편, 인간의 창의성 침해와 예술가들의 노력 희석에 대한 비판적 시각을 불러일으키기도 한다. 본 연구는 이런 다양한 관점에서 창작·예술 분야의 생성형 AI 활용을 깊이 있게 탐구한다. 그 과정에서 여러 생성형 AI 도구들, 특히 이미지 생성기 미드저니와 스테이블디퓨전의 기능과 활용 방안, 그로 인한 사회적, 윤리적 측면을 분석하며, 창작·예술 분야에서의 생성형 AI 활용의 적절한 방향성과 미래 전망을 제시해 보고자 한다.

  • PDF

Research on the Strategic Use of AI and Big Data in the Food Industry to Drive Consumer Engagement and Market Growth

  • Taek Yong YOO;Seong-Soo CHA
    • 식품보건융합연구
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2024
  • Purpose: The research aims to address the intricacies of AI and Big Data application within the food industry. This study explores the strategic implementation of AI and Big Data in the food industry. The study seeks to understand how these technologies can be employed to bolster consumer engagement and contribute to market expansion, while considering ethical implications. Research Method: This research employs a comprehensive approach, analyzing current trends, case studies, and existing academic literature. It focuses on the application of AI and Big Data in areas such as supply chain management, consumer behavior analysis, and personalized marketing strategies. Results: The study finds that AI and Big Data significantly enhance market analytics, consumer personalization, and market trend prediction. It highlights the potential of these technologies in creating more efficient supply chains, improving consumer satisfaction through personalization, and providing valuable market insights. Conclusion and Implications: The paper offers actionable insights and recommendations for the effective implementation of AI and Big Data strategies in the food industry. It emphasizes the need for ethical considerations, particularly in data privacy and the transparency of AI algorithms. The study also explores future trends, suggesting that AI and Big Data will continue to revolutionize the industry, emphasizing sustainability, efficiency, and consumer-centric practices.

디지털 에셋 창작을 위한 생성형 AI 기술 동향 및 발전 전망 (Generative AI Technology Trends and Development Prospects for Digital Asset Creation)

  • 이기석;이승욱;윤민성;유정재;오아름;최인문;김대욱
    • 전자통신동향분석
    • /
    • 제39권2호
    • /
    • pp.33-42
    • /
    • 2024
  • With the recent rapid development of artificial intelligence (AI) technology, its use is gradually expanding to include creative areas and building new content using generative AI solutions, reaching beyond existing data analysis and reasoning applications. Content creation using generative AI faces challenges owing to technical limitations and other aspects such as copyright compliance. Nevertheless, generative AI may increase the productivity of experts and overcome barriers to creative work by allowing users to easily express their ideas as digital content. Thus, various types of applications will continue to emerge. As images and videos can be created using text input on a prompt, generative AI allows to create and edit digital assets quickly. We present trends in generative AI technology for images, videos, three-dimensional (3D) assets and scenes, digital humans, interactive content, and interfaces. In addition, the prospects for future technological development in this field are discussed.

장기 GOCI 자료를 활용한 인공지능 기반 원격 반사도 예측 모델 개발 (Development of Artificial Intelligence-Based Remote-Sense Reflectance Prediction Model Using Long-Term GOCI Data)

  • 이동욱;유주형;주형태;곽근호
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1577-1589
    • /
    • 2023
  • 해양의 모니터링을 위해서는 변화를 예측하는 과정이 필요하다는 것은 널리 인정되고 있다. 이 연구에서는 Geostationary Ocean Color Imager (GOCI) 자료를 이용하여 해양의 변화를 지시할 수 있는 반사도의 시계열 예측을 수행하였다. 이를 위해 다중 규모 Convolutional Long-Short-Term-Memory (ConvLSTM) 모델을 제안하였으며, GOCI-I 자료를 이용하여 모델을 학습하였다. 취득 기간이 다른 GOCI-II 자료를 이용하여 모델의 성능을 검증하였으며, 기존의 ConvLSTM 모델과 성능을 비교하였다. 비교 결과, 제안한 모델은 시공간적 특성을 모두 고려하여 반사도의 변화 경향성을 파악하는데 있어 가장 우수한 결과를 보였다. 장기 예측 결과를 통해 모델이 학습한 반사도의 시간적 변화 경향을 확인하였으며, 이를 이용한 주기적 변화 탐지가 가능할 것으로 기대된다.

Two-stream Convolutional Long- and Short-term Memory 모델의 2001-2021년 9월 북극 해빙 예측 성능 평가 (Performance Assessment of Two-stream Convolutional Long- and Short-term Memory Model for September Arctic Sea Ice Prediction from 2001 to 2021)

  • 지준화
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1047-1056
    • /
    • 2022
  • 지구 온난화의 중요한 지시자인 북극의 바다 얼음인 해빙은 기후 시스템, 선박의 항로 안내, 어업 활동 등에서의 중요성으로 인해 다양한 학문 분야에서 관심을 받고 있다. 최근 자동화와 효율적인 미래 예측에 대한 요구가 커지면서 인공지능을 이용한 새로운 해빙 예측 모델들이 전통적인 수치 및 통계 예측 모델을 대체하기 위해 개발되고 있다. 본 연구에서는 북극 해빙의 전역적, 지역적 특징을 학습할 수 있는 two-stream convolutional long- and short-term memory (TS-ConvLSTM) 인공지능 모델의 북극 해빙 면적이 최저를 보이는 9월에 대해 2001년부터 2021년까지 장기적인 성능 검증을 통해 향후 운용 가능한 시스템으로써의 가능성을 살펴보고자 한다. 장기 자료를 통한 검증 결과 TS-ConvLSTM 모델이 훈련자료의 양이 증가하면서 향상된 예측 성능을 보여주고 있지만, 최근 지구 온난화로 인한 단년생 해빙의 감소로 인해 해빙 농도 5-50% 구간에서는 예측력이 저하되고 있음을 보여주었다. 반면 TS-ConvLSTM에 의해 예측된 해빙 면적과 달리 Sea Ice Prediction Network에 제출된 Sea Ice Outlook (SIO)들의 해빙 면적 중간값의 경우 훈련자료가 늘어나더라도 눈에 띄는 향상을 보이지 않았다. 본 연구를 통해 TS-ConvLSTM 모델의 향후 북극 해빙 예측 시스템의 운용 가능 잠재성을 확인하였으나, 향후 연구에서는 예측이 어려운 자연 환경에서 더욱 안정성 있는 예측 시스템 개발을 위해 더 많은 시공간 변화 패턴을 학습할 수 있는 방안을 고려해야 할 것이다.

첨단 디지털 헬스케어 의료기기를 진료에 도입할 때 평가원칙 (Principles for evaluating the clinical implementation of novel digital healthcare devices)

  • 박성호;도경현;최준일;심정석;양달모;어홍;우현식;이정민;정승은;오주형
    • 대한의사협회지
    • /
    • 제61권12호
    • /
    • pp.765-775
    • /
    • 2018
  • With growing interest in novel digital healthcare devices, such as artificial intelligence (AI) software for medical diagnosis and prediction, and their potential impacts on healthcare, discussions have taken place regarding the regulatory approval, coverage, and clinical implementation of these devices. Despite their potential, 'digital exceptionalism' (i.e., skipping the rigorous clinical validation of such digital tools) is creating significant concerns for patients and healthcare stakeholders. This white paper presents the positions of the Korean Society of Radiology, a leader in medical imaging and digital medicine, on the clinical validation, regulatory approval, coverage decisions, and clinical implementation of novel digital healthcare devices, especially AI software for medical diagnosis and prediction, and explains the scientific principles underlying those positions. Mere regulatory approval by the Food and Drug Administration of Korea, the United States, or other countries should be distinguished from coverage decisions and widespread clinical implementation, as regulatory approval only indicates that a digital tool is allowed for use in patients, not that the device is beneficial or recommended for patient care. Coverage or widespread clinical adoption of AI software tools should require a thorough clinical validation of safety, high accuracy proven by robust external validation, documented benefits for patient outcomes, and cost-effectiveness. The Korean Society of Radiology puts patients first when considering novel digital healthcare tools, and as an impartial professional organization that follows scientific principles and evidence, strives to provide correct information to the public, make reasonable policy suggestions, and build collaborative partnerships with industry and government for the good of our patients.

웹쉘 수집 및 분석을 통한 머신러닝기반 방어시스템 제안 연구 (A study on machine learning-based defense system proposal through web shell collection and analysis)

  • 김기환;신용태
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.87-94
    • /
    • 2022
  • 최근 정보통신 인프라의 발달로 인터넷접속 디바이스가 급속하게 늘어나고 있는 실정이다. 스마트폰, 노트북, 컴퓨터, IoT디바이스까지 인터넷접속을 통하여 정보통신서비스를 받고 있는 것이다. 디바이스 운영환경이 대부분이 웹(WEB)으로 이루어져 있는 관계로 웹쉘을 이용한 웹사이버 공격에 취약하다. 웹쉘이 웹 서버에 업로드 될 경우 웹 서버의 제어가 손쉽게 이루어 질 수 있어서 공격빈도가 높은 것으로 확인된다. 웹쉘로 인한 피해가 많이 발생하면서 각 기업에서는 침입차단시스템, 방화벽, 웹방화벽등 다양한 보안장비로 공격에 대응하고 있지만, 현재 출시되는 대부분의 웹쉘 대응 장비는 패턴 기반으로 탐지가 이루어지기 때문에 웹쉘 변종에 있어서는 탐지가 어려우며 이런 특성으로 웹쉘 공격의 예방 및 대처하기 위해서는 기존의 체계와 보안소프트웨어만 가지고 대응 하기에는 힘든 상황이 현실이다. 이에 인공지능 머신러닝 과 딥러닝기법을 활용하여 알려지지 않은 웹쉘을 사전에 탐지하는 등 신규 사이버 공격에 대하여 대처 할 수 있는 인공지능 머신러닝 기반의 웹쉘 수집 및 분석을 통하여 자동화된 웹쉘 방어시스템에 대하여 제안하고자 한다. 본 논문에서 제안하는 머시러닝기반 웹쉘 방어시스템 모델은 웹환경에 대한 사이버공격중의 하나인 악성 웹쉘에 대하여 수집, 분석, 탐지를 빠르게 하여,안전한 인터넷환경구축 및 운영시 필수적으로 적용이 필요한 웹정보보안 시스템 설계,구축에 많은 도움이 될 것으로 생각한다.

Market in Medical Devices of Blockchain-Based IoT and Recent Cyberattacks

  • Shih-Shuan WANG;Hung-Pu (Hong-fu) CHOU;Aleksander IZEMSKI ;Alexandru DINU;Eugen-Silviu VRAJITORU;Zsolt TOTH;Mircea BOSCOIANU
    • 한국인공지능학회지
    • /
    • 제11권2호
    • /
    • pp.39-44
    • /
    • 2023
  • The creativity of thesis is that the significance of cyber security challenges in blockchain. The variety of enterprises, including those in the medical market, are the targets of cyberattacks. Hospitals and clinics are only two examples of medical facilities that are easy targets for cybercriminals, along with IoT-based medical devices like pacemakers. Cyberattacks in the medical field not only put patients' lives in danger but also have the potential to expose private and sensitive information. Reviewing and looking at the present and historical flaws and vulnerabilities in the blockchain-based IoT and medical institutions' equipment is crucial as they are sensitive, relevant, and of a medical character. This study aims to investigate recent and current weaknesses in medical equipment, of blockchain-based IoT, and institutions. Medical security systems are becoming increasingly crucial in blockchain-based IoT medical devices and digital adoption more broadly. It is gaining importance as a standalone medical device. Currently the use of software in medical market is growing exponentially and many countries have already set guidelines for quality control. The achievements of the thesis are medical equipment of blockchain-based IoT no longer exist in a vacuum, thanks to technical improvements and the emergence of electronic health records (EHRs). Increased EHR use among providers, as well as the demand for integration and connection technologies to improve clinical workflow, patient care solutions, and overall hospital operations, will fuel significant growth in the blockchain-based IoT market for linked medical devices. The need for blockchain technology and IoT-based medical device to enhance their health IT infrastructure and design and development techniques will only get louder in the future. Blockchain technology will be essential in the future of cybersecurity, because blockchain technology can be significantly improved with the cybersecurity adoption of IoT devices, i.e., via remote monitoring, reducing waiting time for emergency rooms, track assets, etc. This paper sheds the light on the benefits of the blockchain-based IoT market.

영화 <엘리시움(Elysium)>에 비춰진 트랜스포머티브와 트랜스휴머니즘 (Transformative and Transhumanism in the film )

  • 김희경
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권8호
    • /
    • pp.1481-1488
    • /
    • 2018
  • 최근 4차 산업혁명, 딥 러닝, 인공지능, 포스트휴먼, 트랜스휴먼 등의 용어가 자주 회자되고 있다. 이 용어들은 급격한 과학기술의 발달로 인해 미래는 지금과는 다른 모습이 될 것이라는 것을 짐작하게 한다. 그러나 지금과는 비약적으로 다른 미래 현상에 천착하는 것을 우선시하기 보다는 현재 그러한 미래 기술이나 현상이 어떤 단계에 있는지를 파악하는 것이 먼저가 아닐까 한다. 따라서 본 연구에서는 특히 과학기술을 사람의 몸에 연결 혹은 결합하는 실제 사례들이 늘어나면서 그렇다면 이러한 인간을 무엇이라고 부를 것이며, 어떤 특징을 가지고 있는지를 변화와 변형을 의미하는 트랜스포머티브를 영화 <엘리시움>을 통해서 살펴보고자 한다. 이를 위해 먼저 트랜스, 트랜스포머티브, 트랜스휴먼(니즘)의 의미를 알아보았고, 다음으로 과학기술과 트랜스휴머니즘의 관계를 살펴보았다. 이어서 영화 <엘리시움>에서의 트랜스포머티브 특징 4가지를 분석하고 그것이 트랜스휴머니즘을 이해하는데 어떤 영향을 미치는지를 알아보았다. 이러한 과정은 향후 포스트휴먼과 포스트휴머니즘을 이해하는 단초가 될 것이다.