• Title/Summary/Keyword: A.C. Servo motor

Search Result 101, Processing Time 0.026 seconds

A BLOC Controller Development for Tread Mill (Tread Mill 구동용 BLDC 제어기 개발)

  • Lee, Dong-Hee;Song, Hyun-Soo;Park, Han-Woong;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.897-899
    • /
    • 2002
  • BLDCM(Brushless D.C. Motor) is widely used industrial application because of high efficiency and high power density. Especially, In servo system and home appliance, BLDCM is very useful due to high control performance and low acoustic noise. In this paper, 2.5HP rated BLDCM controller and drive was developed for tread mill application. The prototype BLDCM has 4 poles rotor and 24 slots stator. Ferrite was used as a rotor magnet due to the cost and temperature characteristic. For the stable operation of tread mill, over current and high temperature can be detected by the DSP control1er. For the commutation signal, switching patterns from the sensorless circuit and hall sensor signal are used in the DSP controller.

  • PDF

Development of an Automatic Water Control System for Greenhouse Soil Water Content Management (시설재배 토양의 수분 조절을 위한 자동 수분제어시스템 개발)

  • Lee, D.H.;Lee, K.S.;Chang, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.115-123
    • /
    • 2008
  • This study was conducted to develop an automatic soil water content control system for greenhouse, which consisted of drip irrigation nozzles, soil water content sensors, an on/off valve, a servo-motor assembly and a control program. The control logic adopted in the system was Ziegler-Nichols algorithm and rising time, time constant and over/undershoot ratio as control variables in the system was selected and determined by various control experiments to maintain small delay time and low overshoot. Based on the experimental results, it was concluded that the control system developed in the study could replace the unreliable conventional greenhouse soil water management.

Control System to Improve a Driving Characteristic of BLDCM for Tread Mill Application (Tread Mill용 BLDCM의 구동 특성 향상을 위한 제어시스템)

  • Lee Ju-Hyun;An Young-Joo;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.50-53
    • /
    • 2004
  • BLDCM(Brushless D.C. Motor) is widely used for industrial application because of high efficiency and high power density. Especially, in servo system and home appliance, BLDCM is very useful due to high control performance and low acoustic noise. In this paper, 2.5HP rated BLDCM and its controller is developed for tread mill application. The prototype BLDCM has 4 poles rotor and 24 slots stator. Ferrite magnet was used as a rotor magnet because of the cost and temperature characteristic. For the stable operation of tread mill, current and temperature can be detected and treated by DSP. Thedesigned BLDCM and its controller is verified by the experimental results.

  • PDF

A Proposal of Point - to - Point Optimal Control Mode (점간(点間) 위치(位置) 최적제어(最適制御) 방식(方式)의 제안(制案))

  • Kim, Joo-Hong;Eom, Ki-Hwan;Cho, Han-Jun;Oh, Jun-Nam;Kim, Jin-Wan
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.72-75
    • /
    • 1988
  • In the point-to-point motion on servo system, the control mode which minimizes the performance index including, the impact of end point, time and energy, is proposed. The proposed control mode applied to the feed-back control system of D.C motor and then had a computer simulation. This control mode had less the impact of end point, stedy state error, time and energy than the bang-bang or the saturating- proportional control mode.

  • PDF

A Study on Development of Three-Phase Inverter Using Single-Chip Microprocessor (싱글칩 마이크로 프로세서를 이용한 3상 인버터 개발에 관한 연구)

  • Kim, Ho-Jin;Park, Su-Young;hahm, Yeon-Chang;Shin, Woo-Seok;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.568-572
    • /
    • 1991
  • This paper describes the three-phase inverter system for 1/2[HP] induction servo motor, using TMS370C050 single-chip microprocessor. The Power MOSFETs are used for PWM inverter circuit because of the advantages such as less harmonic losses and smaller peak current, less torque ripples and noises. Single-chip microprocessor enables the whole controller to be simple and reduced size as well as to more stable and flexible. The basic structures are shown for the power circuit, including the protection and driving circuitry, and the control loops for inverter control functions. The experimental results are given for the prototype PWM inverter system.

  • PDF

Design of 2-DOF PID control system by a Neural network (신경망에 의한 2 자유도 PID 제어기의 설계)

  • 허진영;김홍렬;하홍곤;고태언
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.262-266
    • /
    • 1999
  • In this paper, we consider to apply of 2-DOF (Degree of Freedom) PID controller at D.C servo motor system. Many control system use I-PD, PID control system, but the position control system have difficulty in controling variable load and changing parameter. We propose neural network 2-DOF PID control system having feature for removal disturbrances and tracking function in the target value point. The back propagation algorithm of neural network used for tuning the 2-DOF parameter ($\alpha$, $\beta$, ${\gamma}$, η). We investigate the 2-DOF PID control system in the position control system and verify the effectiveness of proposal method through the result of computer simulation.

  • PDF

Control System for Tread Mill BLDCM Drive quality Elevation (Tread Mill용 BLDCM의 구동 특성 향상을 위한 제어시스템)

  • Lee Ju-Hyun;Lee Dong-Hee;Ahn Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1019-1021
    • /
    • 2004
  • BLDCM(Brushless D.C. Motor) is widely used for industrial application because of high efficiency and high power density. Especially, in servo system and home appliance. BLDCM is very useful due to high control performance and low acoustic noise. In this paper, 2.5HP rated BLDCM controller and drive was developed for tread mill application. The prototype BLDCM has 4 poles rotor and 24 slots stator. Ferrite was used as a rotor magnet due to the cost and temperature characteristic. For the stable operation of tread mill. over current and high temperature can be detected by the DSP controller. For the commutation signal, switching patterns from the sensorless circuit and hall sensor signal are used in the DSP controller.

  • PDF

A Study on the Development of High Precision Cam Profile Measuring System using Laser Interferometer (레이저를 이용한 캠 프로파일 정밀 측정 장치 개발에 관한 연구)

  • Lim S.H.;Lee C.M.;Jung J.Y.;Yoon S.D.;Shin S.H.;Shin S.W.;Hwang Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.267-268
    • /
    • 2006
  • Cam mechanisms are one of the most popular devices for generating irregular motion and are widely used in many industrial areas. The purpose of this study is the development of high precision measuring system fur measurement data acquisition and analysis of a manufactured cam profile. The developed system is composed of servo motor, CNC controller, rotary encoder, and laser interferometer And also, this system is non-contact measuring type. The developed system takes only 5 minutes to measure a cam profile and to analyze the measuring data while the CMM(coordinate measuring machine) takes about 1 hours even by a skilled operator.

  • PDF

Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines (선박용 중속 디젤 기관의 로바스트 속도제어기 개발)

  • Jung, B.G.;Yang, J.H.;Kim, C.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.349-349
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

Implementation of Educational Two-wheel Inverted Pendulum Robot using NXT Mindstorm (NXT Mindstorm을 이용한 교육용 이륜 도립진자 로봇 제작)

  • Jung, Bo Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.127-132
    • /
    • 2017
  • In this paper, we propose a controller gain based on model based design and implement the two-wheel inverted pendulum type robot using NXT Lego and RobotC language. Two-wheel inverted pendulum robot consists of NXT mindstorm, servo DC motor with encoder, gyro sensor, and accelerometer sensor. We measurement wheel angle using bulit-in encoder and calculate wheel angle speed using moving average method. Gyro measures body angular velocity and accelerometer measures body pitch angle. We calculate body angle with complementary filter using gyro and accelerometer sensor. The control gain is a weighted value for wheel angle, wheel angular velocity, body pitch angle, and body pich angular velocity, respectively. We experiment and observe the effect of two-wheel inverted pendulum with respect to change of control gains.