• Title/Summary/Keyword: A. vulgaris

Search Result 583, Processing Time 0.024 seconds

A Study on 3 Cases of Atopic Dermatitis in Children with Molluscum Contagiosum, Verruca Vulgaris (전염성 연속종과 보통 사마귀가 동반된 소아 아토피 피부염 3례 보고)

  • Jo, Su-Ji;Kim, Chul-Yun;Ha, U-Ram;Kwon, Kang
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.33 no.2
    • /
    • pp.174-185
    • /
    • 2020
  • Objectives : Atopic dermatitis is a chronic inflammatory disease characterized by severe pruritus, and may be accompanied by Molluscum Contagiosum, Verruca Vulgaris. This paper aims to examine the clinical implications of the treatment of 3 cases of atopic dermatitis with Molluscum Contagiosum, Verruca Vulgaris. Methods : 3 patients were treated by herbal medicine, herbal acupuncture, acupuncture, moxibustion and external preparations. Photographs of lesions, VAS were used to evaluate the changes in symptoms. Results : Atopic dermatitis is accompanied by Molluscum Contagiosum or Verruca Vulgaris because the underlying cell layer is easily exposed to Molluscum Contagiosum and Human papilloma virus because of scatch by pruritus. And all three cases have been well recovered by korean medical treatment. Conclusions : This study shows that Korean medical treatment is effective to treat atopic dermatitis with Molluscum Contagiosum, Verruca Vulgaris.

Effect of Chlorella vulgaris on gut microbiota through a simulated in vitro digestion process

  • Jin, Jong Beom;Cha, Jin Wook;Shin, Il-Shik;Jeon, Jin Young;An, Hye Suck;Cha, Kwang Hyun;Pan, Cheol-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • The diet plays a fundamental role in the formation of the gut microbiota, determining the interrelationship between the gut microbiota and the host. The current study investigated the effect of Chlorella vulgaris on the gut microbiota by using simulated in vitro digestion and colonic fermentation. Bioaccessibility was measured after in vitro digestion, and SCFAs and microbial profiling were analyzed after colonic fermentation. The bioaccessibility of C. vulgaris was 0.24 g/g. The three major SCFAs (acetate, propionate, and butyrate) increased significantly when compared to the control group. In microbial profiling analysis, microorganisms such as Faecalibacterium, Dialister, Megasphaera, Dorea, Odoribacter, Roseburia, Bifidobacterium, Butyricmonas, and Veillonella were high in C. vulgaris group. Among them, Faecalibacterium, Dialister, Megasphaera, Roseburia, and Veillonella were thought to be closely associated with the increased level of SCFAs. Finally, it can be expected to help improve gut microbiota and health through ingestion of C. vulgaris. However, further studies are vital to confirm the changes in the gut microbiota in in vivo, when C. vulgaris is ingested.

Magnesium Uptake by the Green Microalga Chlorella vulgaris in Batch Cultures

  • Ayed, Hela Ben Amor-Ben;Taidi, Behnam;Ayadi, Habib;Pareau, Dominique;Stambouli, Moncef
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.503-510
    • /
    • 2016
  • The accumulation (internal and superficial distribution) of magnesium ions (Mg2+) by the green freshwater microalga Chlorella vulgaris (C. vulgaris) was investigated under autotrophic culture in a stirred photobioreactor. The concentrations of the three forms of Mg2+ (dissolved, extracellular, and intracellular) were determined with atomic absorption spectroscopy during the course of C. vulgaris growth. The proportions of adsorbed (extracellular) and absorbed (intracellular) Mg2+ were quantified. The concentration of the most important pigment in algal cells, chlorophyll a, increased over time in proportion to the increase in the biomass concentration, indicating a constant chlorophyll/biomass ratio during the linear growth phase. The mean-average rate of Mg2+ uptake by C. vulgaris grown in a culture medium starting with 16 mg/l of Mg2+ concentration was measured. A clear relationship between the biomass concentration and the proportion of the Mg2+ removal from the medium was observed. Of the total Mg2+ present in the culture medium, 18% was adsorbed on the cell wall and 51% was absorbed by the biomass by the end of the experiment (765 h). Overall, 69% of the initial Mg2+ were found to be removed from the medium. This study supported the kinetic model based on a reversible first-order reaction for Mg2+ bioaccumulation in C. vulgaris, which was consistent with the experimental data.

Expression of bovine lactoferrin N-lobe by the green alga, Chlorella vulgaris

  • Koo, Jungmo;Park, Dongjun;Kim, Hakeung
    • ALGAE
    • /
    • v.28 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • The purpose of this study was to express bovine lactoferrin N-lobe in Chlorella vulgaris, a green microalga, using the pCAMBIA1304 vector. Chlorella-codon-optimized bovine lactoferrin N-lobe (Lfb-N gene) was cloned in the expression vector pCAMBIA1304, creating the plasmid pCAMLfb-N. pCAMLfb-N was then introduced into C. vulgaris by electro-transformation. Transformants were separated from BG-11 plates containing 20 ${\mu}g\;mL^{-1}$ hygromycin. Polymerase chain reaction was used to screen transformants harboring Lfb-N gene. Finally, total soluble protein was extracted from the transformants, and the expression of Lfb-N protein was detected using western blotting. Using this method, we successfully expressed bovine lactoferrin in C. vulgaris. Therefore, our results suggested that recombinant lactoferrin N-lobe, which has many uses in the biomedical and pharmaceutical industries, can be produced economically.

Advances in microalgal biomass/bioenergy production with agricultural by-products: Analysis with various growth rate models

  • Choi, Hee-Jeong;Lee, Seo-Yun
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.271-278
    • /
    • 2019
  • Mass cultivation of microalgae is necessary to achieve economically feasible production of microalgal biodiesel. However, the high cost of nutrients is a major limitation. In this study, corncob extract (CCE) was used as an inorganic and organic nutrient source for the mass cultivation of Chlorella vulgaris (C. vulgaris). Chemical composition analysis of CCE revealed that it contained sufficient nutrients for mixotrophic cultivation of C. vulgaris. The highest specific grow rate of C. vulgaris was obtained at pH of 7-8, temperature of $25-30^{\circ}C$, and CCE amount of 5 g/L. In the analysis using various growth models, Luong model was found to be the most suitable empirical formula for mass cultivation of C. vulgaris using CCE. Analysis of biomass and production of triacyglycerol showed that microalgae grown in CCE medium produced more than 17.23% and 3% more unsaturated fatty acids than cells cultured in Jaworski's Medium. These results suggest that growing microalgae in CCE-supplemented medium can increase lipid production. Therefore, CCE, agricultural byproduct, has potential use for mass cultivation of microalgae.

Development of Novel Microsatellite Markers for Strain-Specific Identification of Chlorella vulgaris

  • Jo, Beom-Ho;Lee, Chang Soo;Song, Hae-Ryong;Lee, Hyung-Gwan;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1189-1195
    • /
    • 2014
  • A strain-specific identification method is required to secure Chlorella strains with useful genetic traits, such as a fast growth rate or high lipid productivity, for application in biofuels, functional foods, and pharmaceuticals. Microsatellite markers based on simple sequence repeats can be a useful tool for this purpose. Therefore, this study developed five novel microsatellite markers (mChl-001, mChl-002, mChl-005, mChl-011, and mChl-012) using specific loci along the chloroplast genome of Chlorella vulgaris. The microsatellite markers were characterized based on their allelic diversities among nine strains of C. vulgaris with the same 18S rRNA sequence similarity. Each microsatellite marker exhibited 2~5 polymorphic allele types, and their combinations allowed discrimination between seven of the C. vulgaris strains. The two remaining strains were distinguished using one specific interspace region between the mChl-001 and mChl-005 loci, which was composed of about 27 single nucleotide polymorphisms, 13~15 specific sequence sites, and (T)n repeat sites. Thus, the polymorphic combination of the five microsatellite markers and one specific locus facilitated a clear distinction of C. vulgaris at the strain level, suggesting that the proposed microsatellite marker system can be useful for the accurate identification and classification of C. vulgaris.

Alkaloids are the sedative principles of the seeds of zizyphus vulgaris var spinosus

  • Han, Byung-Hoon;Park, Myung-Hwan
    • Archives of Pharmacal Research
    • /
    • v.10 no.4
    • /
    • pp.203-207
    • /
    • 1987
  • Sedative principles of the seeds of Zizyphus vulgaris var. sphinosus have been characterized as sanjoinine-A (frangufoline), nuciferine and their congeners. Also, heat treatment of sanjoinine-A-produced a more active artifact, sanjoinine-Ahl, which provides a scientific basis for heat-processing (roasting) of this Oriental medicine.

  • PDF

Effect of Nano Bubble Oxygen and Hydrogen Water on Microalgae (나노기포 산소수 및 수소수가 미세조류 배양에 미치는 영향)

  • Choi, Soo-Jeong;Kim, Young-Hwa;Jung, In-Ha;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.324-329
    • /
    • 2014
  • Microalgae Nannochloropsis oculata (N. oculta) and Chlorella vulgaris (C. vulgaris) are important sources for biodisel because of the high content of neutral lipids. Stable nano bubble is maintained for a long time and therefore it is possible for use in biotechnology. In this study, effects of nano bubble oxygen or hydrogen water on the microalgae growth were characterized. The cell growth in nano bubble water was similar to that of control, and the total lipid content was rather low. But, chlorophyll content of N. oculata grown in nanno bubble oxygen and hydrogen water increased 54% and 30%, and increased 59%, 39% in C. vulgaris. Carotenoid content also increased 21%, 25% in N. oculata and 49%, 29% in C. vulgaris grown in nano bubble oxygen and hydrogen water. From these results, nano bubble water seems to enhance the photosynthetic capacity of microalgae.

Acne Vulgaris Improved in Female Patients Diagnosed as 'Stagnation Pattern' Treated with Yukul-tang Gamibang and External Treatments: 2-Case Report (육울탕가미방(六鬱湯加味方)과 외치법(外治法)을 병용한 울증(鬱症)으로 변증된 여성 여드름 환자 치험 2례)

  • Choi, Seok-Young;Hwang, Deok-Sang;Lee, Jin-Moo;Jang, Jun-Bock;Lee, Kyung-Sub;Lee, Chang-Hoon
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.28 no.2
    • /
    • pp.133-142
    • /
    • 2015
  • Objectives : Acne vulgaris is a common skin disorder prevalent among adolescence into adulthood, and its consequences can be detrimental especially for women. The purpose of this study was to investigate the effect of Yukul-tang Gamibang (YG) on female acne vulgaris. Methods : We treated 2 cases of female acne patients diagnosed as ‘Stagnation Pattern’ with herbal medication and external treatments. Herbal medication was orally administered 2 times a day and external treatments were applied once a week on average during the whole treatment period. Results : Photographs were taken at the start of each session, and the pictures of before and after the treatment period were compared. The severity of acne vulgaris was evaluated according to the Korean Acne Grading System (KAGS). We observed clinical improvement and decrease in KAGS grades after treatment. Conclusions : After taking YG, acne vulgaris was significantly improved in both patients. The results suggest that YG may be effective in treating acne vulgaris in female patients diagnosed as ‘Stagnation Pattern’.

Comparison of Models to Describe Growth of Green Algae Chlorella vulgaris for Nutrient Removal from Piggery Wastewater (양돈폐수의 영양염류 제거를 위한 녹조류 Chlorella vulgaris 성장 모형의 비교)

  • Lim, Byung-Ran;Jutidamrongphan, Warangkana;Park, Ki-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.19-26
    • /
    • 2010
  • Batch experiments were conducted to investigate growth and nutrient removal performance of microalgae Chlorella vulgaris by using piggery wastewater in different concentration of pollutants and the common growth models (logistic, Gompertz and Richards) were applied to compare microalgal growth parameters. Removal of nitrogen (N) and phosphorus (P) by Chlorella vulgaris showed correlation with biomass increase, implying nutrient uptake coupled with microalgae growth. The higher the levels of suspended solids (SS), COD and ammonia nitrogen were in the wastewater, the worse growth of Chlorella vulgaris was observed, showing the occurrence of growth inhibition in higher concentration of those pollutants. The growth parameters were estimated by non-linear regression of three growth curves for comparative analyses. Determination of growth parameters were more accurate with population as a variable than the logarithm of population in terms of R square. Richards model represented better fit comparing with logistic and Gompertz model. However, Richards model showed some complexity and sensitivity in calculation. In the cases tested, both logistic and Gompertz equation were proper to describe the growth of microalgae on piggery wastewater as well as easy to application.