• 제목/요약/키워드: A-type delayed rectifier $K^{+}$ currents

검색결과 9건 처리시간 0.026초

Imipramine Inhibits A-type Delayed Rectifier and ATP-Sensitive $K^{+}$ Currents Independent of G-Protein and Protein Kinase C in Murine Proximal Colonic Myocytes

  • Choi, Seok;Parajuli, Shankar Prasad;Lim, Geon-Han;Kim, Jin-Ho;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Jun, Jae-Yeoul
    • Archives of Pharmacal Research
    • /
    • 제29권11호
    • /
    • pp.998-1005
    • /
    • 2006
  • The effects of imipramine on A-type delayed rectifier $K^{+}$ currents and ATP-sensitive $K^{+}\;(K_{ATP)$ currents were studied in isolated murine proximal colonic myocytes using the whole-cell patch-clamp technique. Depolarizing test pulses between-80 mV and +30 mV with 10 mV increments from the holding potential of-80 mV activated voltage-dependent outward $K^{+}$ currents that peaked within 50 ms followed by slow decreasing sustained currents. Early peak currents were inhibited by the application of 4-aminopyridine, whereas sustained currents were inhibited by the application of TEA. The peak amplitude of A-type delayed rectifier $K^{+}$ currents was reduced by external application of imipramine. The half-inactivation potential and the half-recovery time of A-type delayed rectifier $K^{+}$ currents were not changed by imipramine. With 0.1 mM ATP and 140 mM $K^{+}$ in the pipette and 90 mM $K^{+}$ in the bath solution and a holding potential of -80 mV, pinacidil activated inward currents; this effect was blocked by glibenclamide. Imipramine also inhibited $K_{ATP}$ currents. The inhibitory effects of imipramine in A-type delayed rectifier $K^{+}$ currents and $K_{ATP}$ currents were not changed by guanosine 5-O-(2-thiodiphosphate) ($GDP{\beta}S$) and chelerythrine, a protein kinase C inhibitor. These results suggest that imipramine inhibits A-type delayed rectifier $K^{+}$ currents and $K_{ATP}$ currents in a manner independent of G-protein and protein kinase C.

Characterization of Ionic Currents in Human Neural Stem Cells

  • Lim, Chae-Gil;Kim, Sung-Soo;SuhKim, Hae-Young;Lee, Young-Don;Ahn, Seung-Cheol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권4호
    • /
    • pp.131-135
    • /
    • 2008
  • The profile of membrane currents was investigated in differentiated neuronal cells derived from human neural stem cells (hNSCs) that were obtained from aborted fetal cortex. Whole-cell voltage clamp recording revealed at least 4 different currents: a tetrodotoxin (TTX)-sensitive $Na^+$ current, a hyperpolarization-activated inward current, and A-type and delayed rectifier-type $K^+$ outward currents. Both types of $K^+$ outward currents were blocked by either 5 mM tetraethylammonium (TEA) or 5 mM 4-aminopyridine (4-AP). The hyperpolarization-activated current resembled the classical $K^+$ inward current in that it exhibited a voltage-dependent block in the presence of external $Ba^{2+}$ (30 ${\mu}$M) or $Cs^+$ (3${\mu}$M). However, the reversal potentials did not match well with the predicted $K^+$ equilibrium potentials, suggesting that it was not a classical $K^+$ inward rectifier current. The other $Na^+$ inward current resembled the classical $Na^+$ current observed in pharmacological studies. The expression of these channels may contribute to generation and repolarization of action potential and might be regarded as functional markers for hNSCs-derived neurons.

Four Voltage-Gated Potassium Currents in Trigeminal Root Ganglion Neurons

  • Choi, Seung Ho;Youn, Chang;Park, Ji-Il;Jeong, Soon-Yeon;Oh, Won-Man;Jung, Ji-Yeon;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • 제38권1호
    • /
    • pp.13-19
    • /
    • 2013
  • Various voltage-gated $K^+$ currents were recently described in dorsal root ganglion (DRG) neurons. However, the characterization and diversity of voltage-gated $K^+$ currents have not been well studied in trigeminal root ganglion (TRG) neurons, which are similar to the DRG neurons in terms of physiological roles and anatomy. This study was aimed to investigate the characteristics and diversity of voltage-gated $K^+$ currents in acutely isolated TRG neurons of rat using whole cell patch clamp techniques. The first type (type I) had a rapid, transient outward current ($I_A$) with the largest current size having a slow inactivation rate and a sustained delayed rectifier outward current ($I_K$) that was small in size having a fast inactivation rate. The $I_A$ currents of this type were mostly blocked by TEA and 4-AP, K channel blockers whereas the $I_K$ current was inhibited by TEA but not by 4-AP. The second type had a large $I_A$ current with a slow inactivation rate and a medium size-sustained delayed $I_K$ current with a slow inactivation rate. In this second type (type II), the sensitivities of the $I_A$ or $I_K$ current by TEA and 4-AP were similar to those of the type I. The third type (type III) had a medium sized $I_A$ current with a fast inactivation rate and a large sustained $I_K$ current with the slow inactivation rate. In type III current, TEA decreased both $I_A$ and $I_K$ but 4-AP only blocked $I_A$ current. The fourth type (type IV) had a smallest $I_A$ with a fast inactivation rate and a large $I_K$ current with a slow inactivation rate. TEA or 4-AP similarly decreased the $I_A$ but the $I_K$ was only blocked by 4-AP. These findings suggest that at least four different voltage-gated $K^+$ currents in biophysical and pharmacological properties exist in the TRG neurons of rats.

Inhibition of K+ outward currents by linopirdine in the cochlear outer hair cells of circling mice within the first postnatal week

  • Kang, Shin Wook;Ahn, Ji Woong;Ahn, Seung Cheol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.251-257
    • /
    • 2017
  • Inhibition of $K^+$ outward currents by linopirdine in the outer hair cells (OHCs) of circling mice (homozygous (cir/cir) mice), an animal model for human deafness (DFNB6 type), was investigated using a whole cell patch clamp technique. Littermate heterozygous (+/cir) and ICR mice of the same age (postnatal day (P) 0 -P6) were used as controls. Voltage steps from -100 mV to 40 mV elicited small inward currents (-100 mV~-70 mV) and slow rising $K^+$ outward currents (-60 mV~40 mV) which activated near -50 mV in all OHCs tested. Linopirdine, a known blocker of $K^+$ currents activated at negative potentials ($I_{K,n}$), did cause inhibition at varying degree (severe, moderate, mild) in $K^+$ outward currents of heterozygous (+/cir) or homozygous (cir/cir) mice OHCs in the concentration range between 1 and $100{\mu}m$, while it was apparent only in one ICR mice OHC out of nine OHCs at $100{\mu}m$. Although the half inhibition concentrations in heterozygous (+/cir) or homozygous (cir/cir) mice OHCs were close to those reported in $I_{K,n}$, biophysical and pharmacological properties of $K^+$ outward currents, such as the activation close to -50 mV, small inward currents evoked by hyperpolarizing steps and TEA sensitivity, were not in line with $I_{K,n}$ reported in other tissues. Our results show that the delayed rectifier type $K^+$ outward currents, which are not similar to $I_{K,n}$ with respect to biophysical and pharmacological properties, are inhibited by linopirdine in the developing (P0~P6) homozygous (cir/cir) or heterozygous (+/cir) mice OHCs.

Isolation and electrical characterization of the rat spinal dorsal horn neurons

  • Han, Seong-Kyu;Lee, Mun-Han;Ryu, Pan-Dong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.175-175
    • /
    • 1996
  • The spinal dorsal horn is the area where primary afferent fibers terminate and cutaneous sensory information is Processed. A number of putative neurotransmitter substances, including excitatory and inhibitory amino acids and peptides, are present in this region and sites and cellular mechanisms of their actions have been a target of numerous studies. In this study, single neurons were acutely isolated and the properties of whole cell current and responses to excitatory and inhibitory neurotransmitters were studied by the patch clamp method. Young rats (7-14 days) were anesthetized with diethyl-ether, and the lumbar spinal cord was excised and cut transversely at a thickness of 30$\mu\textrm{m}$ by Vibroslicer. The treatment of spinal slices with low concentration of proteases (pronase and thermolysin 0.75 mg/$m\ell$) and mechanical dissociation yielded isolated neurons with near intact morphology. Multipolar, ellipsoidal and bipolar, and pyramidal cells were shown. By applying step voltage pulses to neurons held at -70 mV, two types of inward currents and one outward currents observed. The fast activating and inactivating inward current was the Na$\^$+/ current because of its fast kinetics and blocking by 0.5${\mu}$M TTX, a specific blocker of Na$\^$+/ channel. The second type of inward currents were sustained. Based on their kinetics and current-voltage relations, it was likely that the second type of inward current was the voltage-dependent Ca$\^$2+/ current. In the presence of TTX, the steady-state currents mainly represented outward K$\^$+/ current which looked like the delayed rectifier K$\^$+/ current. In addition, the membrane currents produced by agonist of excitatory amino acid (EAA) receptor and the endogenous transmitter candidate L-glutamate were recorded in isolated whole-cell voltage clamped neurons as well as responses to inhibitory amino acids (${\gamma}$-amino butyric acid, glycine). Drugs were applied by a method that allows complete exchange of the solution within 1 sec; an infinite number of solutions can be applied to a single cell.

  • PDF

Effects of Paroxetine on a Human Ether-a-go-go-related Gene (hERG) K+ Channel Expressed in Xenopus Oocytes and on Cardiac Action Potential

  • Hong, Hee-Kyung;Hwang, Soobeen;Jo, Su-Hyun
    • International Journal of Oral Biology
    • /
    • 제43권1호
    • /
    • pp.43-51
    • /
    • 2018
  • $K^+$ channels are key components of the primary and secondary basolateral $Cl^-$ pump systems, which are important for secretion from the salivary glands. Paroxetine is a selective serotonin reuptake inhibitor (SSRI) for psychiatric disorders that can induce QT prolongation, which may lead to torsades de pointes. We studied the effects of paroxetine on a human $K^+$ channel, human ether-a-go-go-related gene (hERG), expressed in Xenopus oocytes and on action potential in guinea pig ventricular myocytes. The hERG encodes the pore-forming subunits of the rapidly-activating delayed rectifier $K^+$ channel ($I_{Kr}$) in the heart. Mutations in hERG reduce $I_{Kr}$ and cause type 2 long QT syndrome (LQT2), a disorder that predisposes individuals to life-threatening arrhythmias. Paroxetine induced concentration-dependent decreases in the current amplitude at the end of the voltage steps and hERG tail currents. The inhibition was concentration-dependent and time-dependent, but voltage-independent during each voltage pulse. In guinea pig ventricular myocytes held at $36^{\circ}C$, treatment with $0.4{\mu}M$ paroxetine for 5 min decreased the action potential duration at 90% of repolarization ($APD_{90}$) by 4.3%. Our results suggest that paroxetine is a blocker of the hERG channels, providing a molecular mechanism for the arrhythmogenic side effects of clinical administration of paroxetine.

Chronic Ca2+ influx through voltage-dependent Ca2+ channels enhance delayed rectifier K+ currents via activating Src family tyrosine kinase in rat hippocampal neurons

  • Yang, Yoon-Sil;Jeon, Sang-Chan;Kim, Dong-Kwan;Eun, Su-Yong;Jung, Sung-Cherl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.259-265
    • /
    • 2017
  • Excessive influx and the subsequent rapid cytosolic elevation of $Ca^{2+}$ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic $Ca^{2+}$ level in normal as well as pathological conditions. Delayed rectifier $K^+$ channels ($I_{DR}$ channels) play a role to suppress membrane excitability by inducing $K^+$ outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under $Ca^{2+}$-mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of $I_{DR}$ channels to hyperexcitable conditions induced by high $Ca^{2+}$ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high $Ca^{2+}$-treatment significantly increased the amplitude of $I_{DR}$ without changes of gating kinetics. Nimodipine but not APV blocked $Ca^{2+}$-induced $I_{DR}$ enhancement, confirming that the change of $I_{DR}$ might be targeted by $Ca^{2+}$ influx through voltage-dependent $Ca^{2+}$ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated $I_{DR}$ enhancement was not affected by either $Ca^{2+}$-induced $Ca^{2+}$ release (CICR) or small conductance $Ca^{2+}$-activated $K^+$ channels (SK channels). Furthermore, PP2 but not H89 completely abolished $I_{DR}$ enhancement under high $Ca^{2+}$ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for $Ca^{2+}$-mediated $I_{DR}$ enhancement. Thus, SFKs may be sensitive to excessive $Ca^{2+}$ influx through VDCCs and enhance $I_{DR}$ to activate a neuroprotective mechanism against $Ca^{2+}$-mediated hyperexcitability in neurons.

Diversity of Ion Channels in Human Bone Marrow Mesenchymal Stem Cells from Amyotrophic Lateral Sclerosis Patients

  • Park, Kyoung-Sun;Choi, Mi-Ran;Jung, Kyoung-Hwa;Kim, Seung-Hyun;Kim, Hyun-Young;Kim, Kyung-Suk;Cha, Eun-Jong;Kim, Yang-Mi;Chai, Young-Gyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권6호
    • /
    • pp.337-342
    • /
    • 2008
  • Human bone marrow mesenchymal stem cells (hBM-MSCs) represent a potentially valuable cell type for clinical therapeutic applications. The present study was designed to evaluate the effect of long-term culturing (up to $10^{th}$ passages) of hBM-MSCs from eight individual amyotrophic lateral sclerosis (ALS) patients, focusing on functional ion channels. All hBM-MSCs contain several MSCs markers with no significant differences, whereas the distribution of functional ion channels was shown to be different between cells. Four types of $K^+$ currents, including noise-like $Ca^{+2}$-activated $K^+$ current ($IK_{Ca}$), a transient outward $K^+$ current ($I_{to}$), a delayed rectifier $K^+$ current ($IK_{DR}$), and an inward-rectifier $K^+$ current ($K_{ir}$) were heterogeneously present in these cells, and a TTX-sensitive $Na^+$ current ($I_{Na,TTX}$) was also recorded. In the RT-PCR analysis, Kv1.1,, heag1, Kv4.2, Kir2.1, MaxiK, and hNE-Na were detected. In particular, ($I_{Na,TTX}$) showed a significant passage-dependent increase. This is the first report showing that functional ion channel profiling depend on the cellular passage of hBM-MSCs.

Ginseng Saponins Enhance Maxi $Ca^{2+}-activated\;K^+$ Currents of the Rabbit Coronary Artery Smooth Muscle Cells

  • Chunl Induk;Kim Nak-Doo
    • Journal of Ginseng Research
    • /
    • 제23권4호
    • /
    • pp.230-234
    • /
    • 1999
  • 혈관의 평활근 세포막에 존재하는 포타슘채널은 근세포의 막전압을 조절하여 근수축 및 이완을 조절한다. 네가지 유형의 포타슘채널이 근세포막에 존재하며 이중 전도도가 큰 칼슘의존성-포타슘채널$(BK_{Ca})$은 평활근 막전압 조절에 중요한 기능을 담당하는 채널로 알려져 있다. 현재 홍삼 복합사포닌이 혈관 평활근의 이완을 증진시켜 혈압강하를 촉진시킨다고는 알려져 있으나 어떤 분자적 기전이나 전기생리학 기전으로 작용하는지 정확히 알려져 있지 않다. 본 연구는 홍삼 복합사포닌 및 사포닌 $Rg_3$ 성분이 토끼 관상동맥 평활근 세포의 $BK_{Ca}$채널의 활성을 증진시켜 막전압을 과분극시키고 곧 평활근 이완을 촉진한다는 가설을 테스트하였다. 관상동맥 평활근세포의 $BK_{Ca}$채널은 막전압 의존성, 외향정류(outward rectification) 특성을 보였고 단일채널의 전도도는 200pS으로 측정되었으며 charybdotoxin 및 tetraethylammonium에 억제되는 약리학적 특성을 보였다 Whole-cell $BK_{Ca}$활성은 홍삼 복합사포닌에 의해서 농도 의존적으로 증가되었으나 막전압 의존성은 변화되지 않았으며, 단일채널이 열리는 시간은 증가되었다. 홍삼 사포닌 $Rg_3$성분도 막전압 의존성에는 영향을 주지 않으면서$BK_{Ca}$의 활성을 증가시켰으며 단일채널이 열리는 시간도 증가시켰다. 따라서 홍삼 복합사포닌 및 사포닌 $Rg_3$성분은 $BK_{Ca}$의 활성을 증가시켜 막전압을 과분극시켜 평활관의 이완을 촉진한다고 여겨진다.

  • PDF