• Title/Summary/Keyword: A-scan signal

Search Result 294, Processing Time 0.021 seconds

Evaluation of Antidepressant Drug Effect in a Depressive Animal Model by Proton MR Spectroscopy (양성자 자기공명분광법을 이용한 우울증 동물모델에서의 항우울제 약물 효능 평가)

  • Kim, Sang-Young;Choi, Chi-Bong;Lee, Sung-Ho;Woo, Dong-Cheol;Yoon, Seong-Ik;Hong, Kwan-Soo;Lee, Hyun-Sung;Cheong, Chae-Joon;Jee, Bo-Keun;Hong, Sung-Tak;Kim, Hwi-Yool;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 2008
  • In this study, we observed the alteration of choline signal intensity in hippocampus region of the depressive rat model induced by forced swimming test (FST). The purpose of this study was to evaluate the antidepressant efficacy in the depressive animal model using MR spectroscopy. Fourteen experimentally naive male Sprague-Dawley rats weighting $160{\sim}180\;g$ were used as subjects. Drug injection group was exposed to the FST except for control group. The drugs were administered subcutaneously (SC) in a volume equivalent to 2ml/kg. And three injections were administered 23, 5, and 1h before beginning the given test. 1H MR spectra were obtained with use of a point resolved spectroscopy (PRESS) localization sequence performed according to the following parameters: repetition time, 2500 ms; echo time, 144 ms; 512 average; 2048 complex data points; voxel dimensions, $1.5{\times}2.5{\times}2.5\;mm^3$ ; acquisition time, 25min. There were no differences in NAA/Cr and Cho/Cr ratio between the right and the left hippocampus both normal control rats and antidepressant-injected rats. Also, no differences were observed in NAA/Cr and Cho/Cr ratio between the normal control rats and the antidepressant-injected rats both the right and the left hippocampus. In this study, we found the recovery of choline signals in the depressive animal model similar to normal control groups as injecting desipramine-HCl which was antidepressant causing anti-immobility effects. Thus, we demonstrated that MR spectroscopy was able to aid in evaluating the antidepressant effect of desipramine-HCl.

  • PDF

The Usefulness of LEUR Collimator for 1-Day Basal/Acetazolamide Brain Perfusion SPECT (1-Day Protocol을 사용하는 Brain Perfusion SPECT에서 LEUR 콜리메이터의 유용성)

  • Choi, Jin-Wook;Kim, Soo-Mee;Lee, Hyung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.94-100
    • /
    • 2011
  • Purpose: Basal/Acetazolamide-challenged brain perfusion SPECT is very useful to assess cerebral perfusion and vascular reserve. However, as there is a trade off between sensitivity and spatial resolution in the selection of collimator, the selection of optimal collimator is crucial. In this study, we examined three collimators to select optimal one for 1-day brain perfusion SPECT. Materials and Methods: Three collimators, low energy high resolution-parallel beam (LEHR-par), ultra resolution-fan beam (LEUR-fan) and super fine-fan beam (LESFR-fan), were tested for 1-day imaging using Triad XLT 9 (TRIONIX). The SPECT images of Hoffman 3D brain phantom filled with 99mTc of 170 MBq and a normal volunteer were acquired with a protocol of 50 kcts/frame and detector rotation of 3 degree. Filterd backprojection (FBP) reconstruction with Butterworth filter (cut off frequencies, 0.3 to 0.5) was performed. The quantitative and qualitative assessments for three collimators were performed. Results: The blind tests showed that LESFR-fan provided the best image quality for Hoffman brain phantom and the volunteer. However, images for all the collimator were evaluated as 'acceptable'. On the other hand, in order to meet the equivalent signal-to-noise ratio (SNR), total acquisition time or radioactivity dose for LESFR-fan must have been increased up to almost twice of that for LEUR-fan and LEHR-par. The volunteer test indicated that total acquisition time could be reduced approximately by 10 to 14 min in clinical practice using LEUR-fan and LEHR-par without significant loss on image quality, in comparison with LESFR-fan. Conclusion: Although LESFR-fan provides the best image quality, it requires significantly more acquisition time than LEUR-fan and LEHR-par to provide reasonable SNR. Since there is no significant clinical difference between three collimators, LEUR-fan and LEHR-par can be recommended as optimal collimators for 1-day brain perfusion imaging with respect to image quality and SNR.

  • PDF

Analysis of $^1H$ MR Spectroscopy of parietal white matter material Phantom (두정부 백질 물질을 이용한 수소 자기 공명 분광 분석)

  • Lee, Jae-Yeong;Lim, Cheong-Hwan;Kim, Myeong-Soo
    • Journal of radiological science and technology
    • /
    • v.26 no.2
    • /
    • pp.57-61
    • /
    • 2003
  • The purpose of this study is to compare both 1.5T and 4.7T in Praietal White matter material Phantom using the same methodology at both field strengths. Data at both field strengths are compared in terms of $T_2$ relaxation times, line widths and SNRs MR imaging and $^1H$ MR spectroscopy were performed on GE 1.5T SIGNA system and Broker Biospec 4.7T/30 MRI/MRS system. After phantom axial scan $^1H$ MRS was obtained from T2 weighted image by 3-dimensional localization technique(PRESS : Point RE solved spectroscopy Sequence) this phantom is composed of an aqueous solution 36.7 mmol/L of NAA, 25.0 mmol/L of Cr, 6.3 mmol/L of choline chloride, 30.0 mmol/L or Glu, and 22.5 mmol/L of MI(adjusted to a pH of 7,15 in a phosphate buffet). Data processed using software developed inhouse. At 1.5T, T2 relaxation times for Cho, Cr, and NAA were $0.41{\pm}0.07,\;0.26{\pm}0.04,\;0.46{\pm}0.07$ while at 4.7T they were $0.17{\pm}0.03,\;0.14{\pm}0.05,\;0.20{\pm}0.03$ respectively. At 1.5T, line widths for water, Cho, Cr and NAA were $2.9{\pm}0.7,\;1.6{\pm}0.7,\;1.7{\pm}0.8,\;2.2{\pm}0.02Hz$ while at 4.7T they were $5.2{\pm}1.1,\;4.6{\pm}1.9,\;4.01{\pm}1.8,\;4.8{\pm}1.9Hz$ respectively. It can be seen that $T_2$ relaxation times were significantly shorter at 4.7 compared to 1.5T and that the line widths were also broader. The average SNRs for NAA for subjects at short and long TEs were $23.5{\pm}11.3$ at TE=20 msec ; $15.4{\pm}7.7$ at TE=272 msec at 1.5T and $40{\pm}8.3$ and $17{\pm}3.5$ respectively at 4.7T higher field strength is superior because of improved sensitivity and chemical shift dispersion. However these improvements are partially offset by increased line widths and decrease $T_2$ relaxation times, which act to reduce both sensitivity and resolution. In our experiments with the equipment available to us, 4.7T proton spectra at short TEs exhibit moderately improved sensitivity compared to 1.5T.

  • PDF

The Study about Application of LEAP Collimator at Brain Diamox Perfusion Tomography Applied Flash 3D Reconstruction: One Day Subtraction Method (Flash 3D 재구성을 적용한 뇌 혈류 부하 단층 촬영 시 LEAP 검출기의 적용에 관한 연구: One Day Subtraction Method)

  • Choi, Jong-Sook;Jung, Woo-Young;Ryu, Jae-Kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2009
  • Purpose: Flash 3D (pixon(R) method; 3D OSEM) was developed as a software program to shorten exam time and improve image quality through reconstruction, it is an image processing method that usefully be applied to nuclear medicine tomography. If perfoming brain diamox perfusion scan by reconstructing subtracted images by Flash 3D with shortened image acquisition time, there was a problem that SNR of subtracted image is lower than basal image. To increase SNR of subtracted image, we use LEAP collimators, and we emphasized on sensitivity of vessel dilatation than resolution of brain vessel. In this study, our purpose is to confirm possibility of application of LEAP collimators at brain diamox perfusion tomography, identify proper reconstruction factors by using Flash 3D. Materials and methods: (1) The evaluation of phantom: We used Hoffman 3D Brain Phantom with $^{99m}Tc$. We obtained images by LEAP and LEHR collimators (diamox image) and after 6 hours (the half life of $^{99m}Tc$: 6 hours), we use obtained second image (basal image) by same method. Also, we acquired SNR and ratio of white matters/gray matters of each basal image and subtracted image. (2) The evaluation of patient's image: We quantitatively analyzed patients who were examined by LEAP collimators then was classified as a normal group and who were examined by LEHR collimators then was classified as a normal group from 2008. 05 to 2009. 01. We evaluate the results from phantom by substituting factors. We used one-day protocol and injected $^{99m}Tc$-ECD 925 MBq at both basal image acquisition and diamox image acquisition. Results: (1) The evaluation of phantom: After measuring counts from each detector, at basal image 41~46 kcount, stress image 79~90 kcount, subtraction image 40~47 kcount were detected. LEAP was about 102~113 kcount at basal image, 188~210 kcount at stress image and 94~103 at subtraction image kcount were detected. The SNR of LEHR subtraction image was decreased than LEHR basal image about 37%, the SNR of LEAP subtraction image was decreased than LEAP basal image about 17%. The ratio of gray matter versus white matter is 2.2:1 at LEHR basal image and 1.9:1 at subtraction, and at LEAP basal image was 2.4:1 and subtraction image was 2:1. (2) The evaluation of patient's image: the counts acquired by LEHR collimators are about 40~60 kcounts at basal image, and 80~100 kcount at stress image. It was proper to set FWHM as 7 mm at basal and stress image and 11mm at subtraction image. LEAP was about 80~100 kcount at basal image and 180~200 kcount at stress image. LEAP images could reduce blurring by setting FWHM as 5 mm at basal and stress images and 7 mm at subtraction image. At basal and stress image, LEHR image was superior than LEAP image. But in case of subtraction image like a phantom experiment, it showed rough image because SNR of LEHR image was decreased. On the other hand, in case of subtraction LEAP image was better than LEHR image in SNR and sensitivity. In all LEHR and LEAP collimator images, proper subset and iteration frequency was 8 times. Conclusions: We could archive more clear and high SNR subtraction image by using proper filter with LEAP collimator. In case of applying one day protocol and reconstructing by Flash 3D, we could consider application of LEAP collimator to acquire better subtraction image.

  • PDF