• Title/Summary/Keyword: A-grade mild steel

Search Result 14, Processing Time 0.028 seconds

Study on Fracture Behavior of Mild Steel Under Cryogenic Condition (연강(Mild Steel)의 극저온 파괴 거동에 대한 실험적 연구)

  • Choi, Sung Woong;Lee, Woo IL
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.62-66
    • /
    • 2015
  • Considering for plants and structure under extreme conditions is required for the successful design, especially temperature and pressure. The ductile-brittle transition temperature (DBTT) for the materials under extreme condition needs to be considered. In this study, A-grade mild steel for the LNG carrier and offshore plant was examined by performing low-temperature Charpy V-notch (CVN) impact tests to investigate DBTT and the fracture toughness. The absorbed energy decreased gradually with the experimental temperature, which showed an upper-shelf energy region, lower shelf energy region, and transition temperature indicating DBTT. In addition, the fracture surface morphologies of the mild steels indicated ductile fractures at the upper-shelf energy level, with wide and large-sized dimples, whereas a brittle fracture surface, where was observed at the lower-shelf energy level, with both large and small cleavage facets. Based on the experimental results, ductile brittle transition temperature was estimated in about $-60^{\circ}C$.

A Study on Microstructure and Thoughness of Electrogas Weldments (일렉트로가스 용접부의 조직 및 인성에 관한 연구)

  • 이해우;장태원;이윤수;석한길;강성원
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.68-74
    • /
    • 1996
  • The microstructure of HAZ and the mechanical properties in weldments such as hardness and toughness were studied for mild steel and AH36 grade TMCP steel, as increasing heat input with electrogas welding process. The results of this study can be summarized as follow: 1) In the HAZ of mild steel, the width of coarse grained zone was larger than that of the nomalized zone, however in the case of TMCP steel, the nomalized zone was wider than the coarse grained zone. 2) The grain size of HAZ become coarse with increasing heat input. And at the same heat input, the grain size of TMCP steel was more coarser than that of mild steel. 3) According to the change of heat input, the deviation of hardness values was not significant, and the maximum values of hardness was not in HAZ but in the weld metal. And the hardness values in root part was higher than in face part. 4) Even though the HAZ grain size of mild steel was larger than that of TMCP steel, the impact values for mild steel was higher than those for TMCP steel, and the impact values in face part was higher than those in root part.

  • PDF

Study on the Development of 340MPa Grade Super Formable High Strength Steel Sheets (340MPa 급 초고성형성 고강도강판 개발에 관한 연구)

  • Kim, Yong-Hee;Lee, Young-Soo;Lee, Oh-Yeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.48-54
    • /
    • 2009
  • The demand for formable high-strength steel (HSS) sheets has recently increased to reduce the weight of automotive bodies. The 340MPa (Tensile Strength) grade steel sheets are widely used for body inner and outer panels. Especially, super formable 340MPa grade steel sheets with high r-value have an excellent deep drawability compared with the other 340MPa grade steel sheets. It is very available for a part such as rear floor, center floor and dash panels used conventional mild steels up to now. We developed a super formable HSS by optimization of chemical composition, texture control and heat treatment control. It has good mechanical properties with excellent formability (tensile strength: 343MPa, elongation: 41.1% and $\bar{r}=2.1$).

Utilization of Waste Aluminium Foil as a Sacrificial Electrode for the Treatment of Wastewater

  • Perumalsamy, Rajagopal;Kumaran, Chithra;Rajamanickam, Vaishali
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2021
  • In this study, the use of waste food grade aluminium foil and mild steel as a sacrificial electrode in an electrocoagulation system was developed to remove reactive red 111 from wastewater. The effect of different parameters like pH, current density, electrode material, and different electrode configurations was investigated. Optimum operating conditions for maximum COD removal were determined as, 6 mA/㎠ current density and 30 min at 5 pH for aluminium foil and 7 pH for mild steel. Maximum COD reduction obtained at optimum conditions using monopolar 4 electrodes, monopolar 2 electrodes and bipolar electrode configuration were 96.5%, 89.3%, and 90.2% for Mild steel as a sacrificial electrode and 92.1%, 84.2%, and 88.6% for aluminium foil as a sacrificial electrode. The consumption of electrode and energy for both the electrodes of different configurations were calculated and compared. Using batch experimental data, a continuous-flow reactor was developed. Sludge analysis using Fourier Transform Infra-Red Spectroscopy (FTIR) analysis was done. Different adsorption kinetic models and isotherms were developed and it was found that pseudo second-order model and Langmuir isotherm fit best with the experimental data obtained.

Push-out resistance of concrete-filled spiral-welded mild-steel and stainless-steel tubes

  • Loke, Chi K.;Gunawardena, Yasoja K.R.;Aslani, Farhad;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.823-836
    • /
    • 2019
  • Spiral welded tubes (SWTs) are fabricated by helically bending a steel plate and welding the resulting abutting edges. The cost-effectiveness of concrete-filled steel tube (CFST) columns can be enhanced by utilising such SWTs rather than the more conventional longitudinal seam welded tubes. Even though the steel-concrete interface bond strength of such concrete-filled spiral-welded steel tubes (CF-SWSTs) is an important consideration in relation to ensuring composite behaviour of such elements, especially at connections, it has not been investigated in detail to date. CF-SWSTs warrant separate consideration of their bond behaviour to CFSTs of other tube types due to the distinct weld seam geometry and fabrication induced surface imperfection patterns of SWTs. To address this research gap, axial push-out tests on forty CF-SWSTs were carried out where the effects of tube material, outside diameter (D), outside diameter to wall thickness (D/t), length of the steel-concrete interface (L) and concrete strength grade (f'c) were investigated. D, D/t and L/D values in the range 102-305 mm, 51-152.5 and 1.8-5.9 were considered while two nominal concrete grades, 20 MPa and 50 MPa, were used for the tests. The test results showed that the push-out bond strengths of CF-SWSTs of both mild-steel and stainless-steel were either similar to or greater than those of comparable CFSTs of other tube types. The bond strengths obtained experimentally for the tested CF-SWSTs, irrespective of the tube material type, were found to be well predicted by the guidelines contained in AISC-360.

Effect of Post Heat Treatment Temperature on Interface Diffusion Layer and Bonding Force in Roll Cladded Ti/Mild steel/Ti Material (압연 클래드된 Ti/Mild steel/Ti 재의 계면확산층과 접합력에 미치는 후열처리온도의 영향)

  • Lee, Sangmok;Kim, Su-Min;We, Se-Na;Bae, Dong-Hyun;Lee, Geun-An;Lee, Jong-Sup;Kim, Yong-Bae;Bae, Dong-Su
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.316-323
    • /
    • 2012
  • The aim of this study is to investigate the effect of post heat treatment on bonding properties of roll cladded Ti/MS/Ti materials. First grade Ti sheets and SPCC mild steel sheets were prepared and then Ti/MS/Ti clad materials were fabricated by a cold rolling and post heat treatment process. Microstructure and point analysis of the Ti/MS interfaces were performed using the SEM and EDX Analyser. Diffusion bonding was observed at the interfaces of Ti/MS. The thickness of the diffusion layer increased with post heat treatment temperature and the diffusion layer was verified as having $({\epsilon}+{\zeta})+({\zeta}+{\beta}-Ti)$ intermetallic compounds at $700^{\circ}C$ and an $({\zeta}+{\beta}-Ti)$ intermetallic compound at $800^{\circ}C$, respectively. The micro Knoop hardness of mild steel decreased with post heat treatment temperature; however, those of Ti decreased at a range of $500{\sim}600^{\circ}C$ and showed a uniform value until $800^{\circ}C$ and then increased rapidly up to $900^{\circ}C$. The micro Knoop hardness value of the diffusion layer increased up to $700^{\circ}C$ and then saturated with post heat treatment. A T-type peel test was used to estimate the bonding forces of Ti/Mild steel interfaces. The bonding forces decreased up to $800^{\circ}C$ and then increased slightly with post heat treatment. The optimized temperature ranges for post heat treatment were $500{\sim}600^{\circ}C$ to obtain the proper formability for an additional plastic deformation process.

Cryogenic Charpy Impact Test based on GTAW Method of AISI 304 Stainless Steel for LNG Pipeline (AISI 304 스테인리스 강으로 제작된 LNG배관 용접부의 극저온 샤르피 충격시험)

  • Kim, Jeong-Hyeon;Choi, Sung-Woong;Park, Doo-Hwan;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.89-94
    • /
    • 2014
  • AISI 304 austenitic stainless steel is widely used for LNG pipes for LNG transmission thanks to its good metallurgical and mechanical properties. In the present research, impact toughness of a gas tungsten arc welded AISI 304 stainless steel pipe was evaluated between room and liquid nitrogen ($-196^{\circ}C$) test temperatures. In addition, a comparative study was made of the fracture behavior of FCC crystal structured stainless steel weldments and BCC crystal structured mild steels(A-grade and SS400). The results showed a slight decrease in the impact energy of the AISI 304 base metal, heat affected zone(HAZ), and welded zone with decreasing test temperature. In addition, the welded metal has the highest absorbed impact energy, followed by HAZ and the base metal.

Effects of Low Temperature on Mechanical Properties of Steel and Ultimate Hull Girder Strength of Commercial Ship (저온환경이 선박 및 해양플랜트용 탄소강재의 재료강도특성 및 상선의 최종 종강도 거동에 미치는 영향)

  • Kim, Do Kyun;Park, Dae Kyeom;Seo, Jung Kwan;Paik, Jeom Kee;Kim, Bong Ju
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.427-432
    • /
    • 2012
  • This paper presents the material properties of carbon steels for ships, and offshore structures (ASTM A131) are tested under a series of arctic and cryogenic temperature conditions. For material tension tests, among the ASTM 131 steels, Grades A and B of mild steel and Grade AH of high tensile steel have been used. The obtained mechanical properties of the materials from the material tension tests were applied in a 13,000TEU class container ship to define the effect of low temperature on the ultimate longitudinal strength of the target structure by using the ALPS/HULL intelligent supersize finite element method. The tensile coupon test results showed increased strength and nonuniform fracture strain behaviors within different grades and temperatures. Increasing the material strength resulted in increasing the ultimate longitudinal strength of the ship.

Optimization of GMAW Process Parameters to Improve the Length of Penetration in EN 10025 S 235 Grade

  • Deshpande, M.U.;Kshirsagar, J.M.;Dharmadhikari, Dr. H.M.
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.74-78
    • /
    • 2017
  • In auto ancillary fabrication industry, GMAW is a very useful & important welding process and EN10025 S 235 Grade is common material used for manufacturing of two wheeler chassis. This research gives the detail influence of welding process parameters such as welding current, welding voltage, wire speed on the penetration in EN10025 S 235 Grade mild steel material. The experimentation of this research has been carried out by using three factors, three level Taguchi DOE method. To analyze & optimize the welding parameters & characteristics, analysis of variance, L9 orthogonal array & signal to noise ratio are used. Length of Penetration in addition to the depth of penetration is major concern in fillet welded joints, as the penetration decides the strength of the welded joint. After analysis of penetration in all 9 welded samples, optimize parameters readings verified & found probability value within 0.05.From this research it is come to know that welding current & welding voltage is major parameters which affects the penetration in welded joints.