• Title/Summary/Keyword: A-P compression ratio

Search Result 135, Processing Time 0.025 seconds

Real - Time Applications of Video Compression in the Field of Medical Environments

  • K. Siva Kumar;P. Bindhu Madhavi;K. Janaki
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.73-76
    • /
    • 2023
  • We introduce DCNN and DRAE appraoches for compression of medical videos, in order to decrease file size and storage requirements, there is an increasing need for medical video compression nowadays. Using a lossy compression technique, a higher compression ratio can be attained, but information will be lost and possible diagnostic mistakes may follow. The requirement to store medical video in lossless format results from this. The aim of utilizing a lossless compression tool is to maximize compression because the traditional lossless compression technique yields a poor compression ratio. The temporal and spatial redundancy seen in video sequences can be successfully utilized by the proposed DCNN and DRAE encoding. This paper describes the lossless encoding mode and shows how a compression ratio greater than 2 (2:1) can be achieved.

Multi-threaded system to support reconfigurable hardware accelerators on Zynq SoC (Zynq SoC에서 재구성 가능한 하드웨어 가속기를 지원하는 멀티쓰레딩 시스템 설계)

  • Shin, Hyeon-Jun;Lee, Joo-Heung
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.186-193
    • /
    • 2020
  • In this paper, we propose a multi-threading system to support reconfigurable hardware accelerators on Zynq SoC. We implement high-performance JPEG decoder with reconfigurable 2D IDCT hardware accelerators to achieve maximum performance available on the platform. In this system, up to four reconfigurable hardware accelerators synchronized with SW threads can be dynamically reconfigured to provide adaptive computing capabilities according to the given image resolution and the compression ratio. JPEG decoding is operated using images with resolutions 480p, 720p, 1080p at the compression ratio of 7:1-109:1. We show that significant performance improvements are achieved as the image resolution or the compression ratio increase. For 1080p resolution, the performance improvement is up to 79.11 times with throughput speed of 99 fps at the compression ratio 17:1.

Seismic behavior of full-scale square concrete filled steel tubular columns under high and varied axial compressions

  • Phan, Hao D.;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.677-689
    • /
    • 2020
  • A building structural system of moment resisting frame (MRF) with concrete filled steel tubular (CFST) columns and wide flange H beams, is one of the most conveniently constructed structural systems. However, there were few studies on evaluating seismic performance of full-scale CFST columns under high axial compression. In addition, some existing famous design codes propose various limits of width-to-thickness ratio (B/t) for steel tubes of the ductile CFST composite members. This study was intended to investigate the seismic behavior of CFST columns under high axial load compression. Four full-scale square CFST column specimens with a B/t of 42 were carried out that were subjected to horizontal cyclic-reversal loads combined with constantly light, medium and high axial loads and with a linearly varied axial load, respectively. Test results revealed that shear strength and deformation capacity of the columns significantly decreased when the axial compression exceeded 0.35 times the nominal compression strength of a CFST column, P0. It was obvious that the higher the axial compression, the lower both the shear strength and deformation capacities were, and the earlier and faster the shear strength degradation occurred. It was found as well that higher axial compressions resulted in larger initial lateral stiffness and faster degradation of post-yield lateral stiffness. Meanwhile, the lower axial compressions led to better energy dissipation capacities with larger cumulative energy. Moreover, the study implied that under axial compressions greater than 0.35P0, the CFST column specimens with B/t limits recommended by AISC 360 (2016), ACI 318 (2014), AIJ (2008) and EC4 (2004) codes do not provide ultimate interstory drift ratio of more than 3% radian, and only the limit in ACI 318 (2014) code satisfies this requirement when axial compression does not exceed 0.35P0.

A Study on the Guided Search Method for Transcoding MPEG2 P frame to H.263 P frame in a Compressed Domain (압축상태에서 MPEG2 P 프레임을 H.263 P 프레임으로 변환하기 위한 가이드 탐색 방법 연구)

  • Um, Sung-Min;Kang, Eui-Seon;Lim, Young-Wan;Hwang, Jae-Gak
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.745-752
    • /
    • 2002
  • The purpose of the paper is to enable a format transcoding between a heterogeneous compression format in a real time, and to enhance the compression ratio using characteristics of the compressed frame. In this paper, for the heterogeneous format transcoding, we tried to transcode from MPEG2 having a lower compression ratio to H.263 having a higher compression ratio. After analyzing MPEG 2 bit stream and H.263 bit stream of the same original video, we found that the number of intra coded macro blocks in MPEG 2 data is much higher than the number of the intra coded macro blocks in H.263 data. In the process of P frame generation, a intra coded macro block is generated when a motion estimation value representing the similarity between the previous frame and current frame does not meet a threshold. Especially the intra coded macro block has a great impact on the compression ratio. Hence the paper, we tried to minimize the number of intra coded macro blocks in H.263 data stream which is transcoded from MPEG 2 in a compressed domain. For the purpose, we propose a guided search method for transcoding the INTRA coded block into INTER coded block using the information about motion vectors surrounding the intra macro block in order to minimize the complexity of the motion estimation process. The experimental results show that the transcoding of MPEG 2 into H.263 can be done in a real time successfully.

Chest compression quality, exercise intensity, and energy expenditure during cardiopulmonary resuscitation using compression-to-ventilation ratios of 15:1 or 30:2 or chest compression only: a randomized, crossover manikin study

  • Kwak, Se-Jung;Kim, Young-Min;Baek, Hee Jin;Kim, Se Hong;Yim, Hyeon Woo
    • Clinical and Experimental Emergency Medicine
    • /
    • v.3 no.3
    • /
    • pp.148-157
    • /
    • 2016
  • Objective Our aim was to compare the compression quality, exercise intensity, and energy expenditure in 5-minute single-rescuer cardiopulmonary resuscitation (CPR) using 15:1 or 30:2 compression-to-ventilation (C:V) ratios or chest compression only (CCO). Methods This was a randomized, crossover manikin study. Medical students were randomized to perform either type of CPR and do the others with intervals of at least 1 day. We measured compression quality, ratings of perceived exertion (RPE) score, heart rate, maximal oxygen uptake, and energy expenditure during CPR. Results Forty-seven students were recruited. Mean compression rates did not differ between the 3 groups. However, the mean percentage of adequate compressions in the CCO group was significantly lower than that of the 15:1 or 30:2 group ($31.2{\pm}30.3%$ vs. $55.1{\pm}37.5%$ vs. $54.0{\pm}36.9%$, respectively; P<0.001) and the difference occurred within the first minute. The RPE score in each minute and heart rate change in the CCO group was significantly higher than those of the C:V ratio groups. There was no significant difference in maximal oxygen uptake between the 3 groups. Energy expenditure in the CCO group was relatively lower than that of the 2 C:V ratio groups. Conclusion CPR using a 15:1 C:V ratio may provide a compression quality and exercise intensity comparable to those obtained using a 30:2 C:V ratio. An earlier decrease in compression quality and increase in RPE and heart rate could be produced by CCO CPR compared with 15:1 or 30:2 C:V ratios with relatively lower oxygen uptake and energy expenditure.

Treatment Effect with Weekly Teriparatide in the Vertebral Compression Fractures in Patients with Severe Osteoporosis (심한 골다공증 환자에서 발생한 척추체 압박골절에 대한 주 단위 테리파라타이드(Teriparatide)의 투여 효과)

  • Hwang, Seok-Ha;Woo, Young-Kyun;Jeon, Ho-Seung;Suh, Seung-Pyo;Kim, Joo-Young;Kim, Jae-Nam
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.6
    • /
    • pp.528-536
    • /
    • 2019
  • Purpose: This study examined the effects of a weekly teriparatide on the change in vertebral compression ratio, back pain, and vertebral fracture healing in osteoporosis patients with vertebral compression fractured induced by low energy trauma. Materials and Methods: From January 2016 to December 2017, 57 patients with severe osteoporotic vertebral fractures with a T score of -3.5 or less were included in this study. The changes in the vertebral compression ratio, visual analogue scale (VAS), Oswestry disability index (ODI) for at least 6 months were examined. The morphology of bone marrow edema and the presence of intervertebral cleft, osteocalcin, and N-terminal telopeptide (NTx) were also investigated. Results: The mean compression ratio was 20% in the experimental group (teripratide group) at 3 months, and 38% in the control group. A significant difference in the compression ratio of the vertebral body over time was observed (p<0.05; t-test). A comparison of the compression ratio of the vertebral body with the follow-up duration in each group showed no significant increase in the, compression (p=0.063) in the experimental group and a significant increase in the control group (p<0.05). The mean time to reach the plateau of the compression rate was one month in the experimental group and three months in the control group. The VAS score in the experimental and control group was 0.39 and 1.07 points, respectively. The ODI score in the experimental and control group was 33.72 and 39.52, respectively. At the last follow-up radiographs, there were no cases with an intervertebral cleft (0%) in the experimental group and 1 case (2.2%) in the control group. A significant difference in the osteocalcin level was observed between the injury and 6 months after the injury (p=0.003). In addition, there was no significant difference in the NTx level between the injury and 6 months after injury (p=0.960). Conclusion: In vertebral compression fractures patients with severe osteoporosis, a weekly teriparatide can promote the union of fractures, prevent further collapse of the vertebral body, and reduce the back pain faster.

DESIGN OF A LOW TEMPERATURE DIFFERENCE STIRLING ENGINE (저온도차 모형 스털링 엔진의 최대출력 설계조건)

  • Jung, P.S.;Won, M.Y.;Kim, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.420-423
    • /
    • 2003
  • A low temperature difference model Stirling engine is a small Stirling engine running with several degree of temperature difference without power output. In this study, the design parameters to give maximum power are discussed. As results, the phase angle is about 100 degree, and compression ratio is 1.5% of the ratio of heat source temperatures at maximum power condition.

  • PDF

Study on the Estimation of Proper Compression Ratios for Korean Domestic Wood Species by Single Pellet Press

  • LEE, Hyoung-Woo;KIM, Soon-Bae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.450-457
    • /
    • 2020
  • Single pellet press technology allows for fast, low-cost, and small-scale tests to investigate pelletizing characteristics. We estimated proper compression ratios for five Korean domestic wood species through predicted relationships between pelletizing pressure Px and compression ratio based on experimental data obtained from a single pellet press unit. The pressures required to obtain a 6-mm-diam pellet of density 1200 kg/㎥ were estimated as 111 MPa for Populus davidiana, 133 MPa for Robinia pseudoacacia, 136 MPa for Quercus mongolica, 97 MPa for Pinus densiflora, and 127 MPa for Pinus rigida. On the basis of these pressures, we estimated proper compression ratios to be within the range 7.676-8.410 for these species, and we found the compression ratios needed for hardwood species to be somewhat higher than those needed for softwood species to obtain the pellet density of 1200 kg/㎥.

An Adaptive Data Compression Algorithm for Video Data (사진데이타를 위한 한 Adaptive Data Compression 방법)

  • 김재균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 1975
  • This paper presents an adaptive data compression algorithm for video data. The coling complexity due to the high correlation in the given data sequence is alleviated by coding the difference data, sequence rather than the data sequence itself. The adaptation to the nonstationary statistics of the data is confined within a code set, which consists of two constant length cades and six modified Shannon.Fano codes. lt is assumed that the probability distributions of tile difference data sequence and of the data entropy are Laplacian and Gaussion, respectively. The adaptive coding performance is compared for two code selection criteria: entropy and $P_r$[difference value=0]=$P_0$. It is shown that data compression ratio 2 : 1 is achievable with the adaptive coding. The gain by the adaptive coding over the fixed coding is shown to be about 10% in compression ratio and 15% in code efficiency. In addition, $P_0$ is found to he not only a convenient criterion for code selection, but also such efficient a parameter as to perform almost like entropy.

  • PDF

Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression

  • Emrah, Madenci;Sabry, Fayed;Walid, Mansour;Yasin Onuralp, Ozkilic
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.653-663
    • /
    • 2022
  • This study reports the results of a series of tests of pultruded glass fiber reinforced polymer (P-GFRP) box section composite profile columns, geometrically similar with/without concrete core, containing 0-1-2-3% steel fiber, with different lengths. The recycled steel wires were obtained from waste tyres. The effects of steel fiber ratio on the collapse and size effect of concrete filled P-GFRP columns under axial pressure were investigated experimentally and analytically. A total of 36 columns were tested under compression. The presence of pultruded profile and steel wire ratio were selected as the primary variable. The capacity of pultruded profiles with infilled concrete are averagely 9.3 times higher than the capacity of concrete without pultruded profile. The capacity of pultruded profiles with infilled concrete are averagely 34% higher than that of the pultruded profiles without infilled concrete. The effects of steel wire ratio are more pronounced in slender columns which exhibit buckling behavior. Moreover, the proposed analytical approach to calculate the capacity of P-GFRP columns successfully predicted the experimental findings in terms of both pure axial and buckling capacity.