• Title/Summary/Keyword: A-LTPS

Search Result 124, Processing Time 0.234 seconds

저온 Poly-Si TFT를 이용한 System on Panel용 8-Bit DAC 설계 (Design of 8-bit DAC for System on Panel using Low Temperature Poly-Si TFTs)

  • 변춘원;최병덕
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.841-842
    • /
    • 2006
  • This paper has proposed a serial 8-bit DAC for column driver circuits of mobile displays using LTPS TFTs. The DAC circuit takes very small area by using parasitic capacitance of column lines as sampling and holding capacitors. Moreover, the proposed DAC does not need the analog buffer, because the DAC operation is performed on the column lines. For the data driver circuits of 2-inch qVGA OLED panel, the DAC area is $84um{\times}800um$ and the simulated DAC power consumption is 8.5mW with 10-V supply voltage.

  • PDF

SLS (Sequential Lateral Solidification) Technology for High End Mobile Applications

  • Kang, Myung-Koo;Kim, Hyun-Jae;Kim, ChiWoo;Kim, Hyung-Guel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.8-11
    • /
    • 2007
  • The new technologies in mobile display developed in SEC are briefly reviewed. For a differentiation, SEC's LTPS line is based on SLS (Sequential Lateral Solidification) technology. In this paper, the characteristics of SEC's SLS in recent and future mobile displays were discussed. The microstructure produced by SLS crystallization is dependent on SLS process conditions such as mask design, laser energy density, and pulse duration time. The microstructure and TFT (Thin Film Transistor) performance are closely related. For an optimization of TFT performance, SLS process condition should be adjusted. Other fabrication processes except crystallization such as blocking layer, gate insulator deposition and cleaning also affect TFT performance. Optimized process condition and tailoring mask design can make it possible to produce high quality AMOLED devices. The TFT non-uniformity caused by laser energy density fluctuation could be successfully diminished by mixing technology.

  • PDF

Design and Analysis of Current Mode Low Temperature Polysilicon TFT Inverter/Buffer

  • Lee, Joon-Chang;Jeong, Ju-Young
    • Journal of Information Display
    • /
    • 제6권4호
    • /
    • pp.11-15
    • /
    • 2005
  • We propose a current mode logic circuit design method for LTPS TFT for enhancing circuit operating speed. Current mode inverter/buffers with passive resistive load had been designed and fabricated. Measurement results indicated that the smaller logic swing of the current mode allowed significantly faster operation than the static CMOS. In order to reduce the chip size, both all pTFT and all nTFT active load current mode inverter/buffer had been designed and analyzed by HSPICE simulation. Even though the active load current mode circuits were inferior to the passive load circuits, it was superior to static CMOS gates.

New Voltage Programming LTPS-TFT Pixel Scaling Down VTH Variation for AMOLED Display

  • Nam, Woo-Jin;Lee, Jae-Hoon;Shin, Hee-Sun;Jeon, Jae-Hong;Han, Min-Koo
    • Journal of Information Display
    • /
    • 제7권3호
    • /
    • pp.9-12
    • /
    • 2006
  • A new voltage-scaled compensation pixel which employs 3 p-type poly-Si TFTs and 2 capacitors without additional control line has been proposed and verified. The proposed pixel does not employ the $V_{TH}$ memorizing and cancellation, but scales down the inevitable $V_{TH}$ variation of poly-Si TFT. Also the troublesome narrow input range of $V_{DATA}$ is increased and the $V_{DD}$ supply voltage drop is suppressed. In our experimental results, the OLED current error is successfully compensated by easily controlling the proposed voltage scaling effects.

라만 분석을 통한 비정질 실리콘 박막의 고온 고상 결정화 거동 (Behavior of Solid Phase Crystallization of Amorphous Silicon Films at High Temperatures according to Raman Spectroscopy)

  • 홍원의;노재상
    • 한국표면공학회지
    • /
    • 제43권1호
    • /
    • pp.7-11
    • /
    • 2010
  • Solid phase crystallization (SPC) is a simple method in producing a polycrystalline phase by annealing amorphous silicon (a-Si) in a furnace environment. Main motivation of the crystallization technique is to fabricate low temperature polycrystalline silicon thin film transistors (LTPS-TFTs) on a thermally susceptible glass substrate. Studies on SPC have been naturally focused to the low temperature regime. Recently, fabrication of polycrystalline silicon (poly-Si) TFT circuits from a high temperature polycrystalline silicon process on steel foil substrates was reported. Solid phase crystallization of a-Si films proceeds by nucleation and growth. After nucleation polycrystalline phase is propagated via twin mediated growth mechanism. Elliptically shaped grains, therefore, contain intra-granular defects such as micro-twins. Both the intra-granular and the inter-granular defects reflect the crystallinity of SPC poly-Si. Crystallinity and SPC kinetics of high temperatures were compared to those of low temperatures using Raman analysis newly proposed in this study.

Osmotic Stress-Inducible Expression of a Lipid Transfer Protein Gene in Poplar

  • Lee, Hyo-Shin;Shin, Han-Na;Bae, Eun-Kyung;Lee, Jae-Soon;Noh, Eun-Woon
    • 한국자원식물학회지
    • /
    • 제21권3호
    • /
    • pp.204-209
    • /
    • 2008
  • We have cloned an LTP gene (PoLTP1) from poplar (Populus alba ${\times}$ P. tremula var. glandulosa) suspension cells and examined changes in its expression levels in response to various stresses and ABA treatment. The full-length PoLTP1 cDNA clone encodes a polypeptide of 116 amino acids with typical characteristics of LTPs, notably a conserved arrangement of cysteine residues. Southern blot analysis indicate that two or three copies of the PoLTP1 are present in the genome of the investigated hybrid poplar. In addition, northern analysis of samples from soil-grown plants indicate that PoLTP1 is tissue-specifically expressed in the leaves and flowers. The gene is significantly up-regulated by treatment with mannitol, NaCl and ABA, but not by either cold or wounding. These results indicate that PoLTP1 is involved in osmotic stress responses in poplar plants and suspension cells.

Electrcal Property of IGZO TFTs Using Nanoparticles

  • 이종택;박인규;노용한
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.447-447
    • /
    • 2013
  • 최근 전자산업의 발전으로 차세대 디스플레이 소자로 산화물반도체가 주목받고 있다. 산화물 반도체는 저온공정, 높은 이동도 및 투과율을 가지기 때문에 이러한 공정이나 물성 측면에 있어 기존의 a-Si, LTPS 등을 대채할 만한 소자로서 연구가 활발이 이루어지고 있다. 특히 고해상도 및 고속구동이 진행됨에 따라 높은 이동도의 필요성이 대두되고 있다. 본 연구에서는 IGZO 산화물 반도체 박막트랜지스터의 이동도 개선을 위해 나노입자를 사용하였다. 게이트전극으로 사용된 Heaviliy doped P-type Si 기판위에 200 nm의 SiO2 절연층을 성장시킨 후, 채널로 작동하기 위한 IGZO 박막을 증착하기 전에 10~20 nm 크기의 니켈, 금 나노입자를 부착시켰다. 열처리 온도는 $350^{\circ}C$, 90분동안 진행하였고, 100 nm의 알루미늄 전극을 증착시켜 TFT 소자를 제작하였다. TFT 소자가 동작할 시, IGZO 박막 내부의 전자들은 게이트 전압으로 인해 하부로 이동하여 채널을 형성, 동시에 드레인 전압으로 인한 캐리어들의 움직임으로 인해 소자가 동작하게 된다. 본 연구에서는 채널이 형성되는 계면 부근에 전도성이 높은 금속 나노입자를 부착시켜 다수 캐리어인 전자가 채널을 통과할 때 전류흐름에 금속 나노입자들이 기여하여 전기적 특성의 변화에 어떠한 영향을 주는지 연구하였다. 반응시간을 조절하여 기판에 붙는 나노입자의 밀도 변화에 따른 특성과 다양한 크기(5, 10, 20 nm)를 갖는 금, 니켈 나노입자를 포함한 IGZO TFTs 소자를 제작하여 전달특성, 출력특성의 변화를 비교하였고, 실질적인 채널길이의 감소효율과 캐리어 이동도의 변화를 비교분석 하였다.

  • PDF

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • 백충렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

Identification and Characterization of Genes Differentially Expressed in the Resistance Reaction in Wheat Infected with Tilletia tritici, the Common Bunt Pathogen

  • Lu, Zhen-Xiang;Gaudet, Denis A.;Frick, Michele;Puchalski, Byron;Genswein, Bernie;Laroche, Andre
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.420-431
    • /
    • 2005
  • The differentially virulent race T1 of common bunt (Tilletia tritici) was used to inoculate the wheat lines Neepawa (compatible) and its sib BW553 (incompatible) that are nearly isogenic for the Bt-10 resistance gene. Inoculated crown tissues were used to construct a suppression subtractive hybridization (SSH) cDNA library. Of the 1920 clones arrayed from the SSH cDNA library, approximately 10% were differentially regulated. A total of 168 differentially up-regulated and 25 down-regulated genes were identified and sequenced; 71% sequences had significant homology to genes of known function, of which 59% appeared to have roles in cellular metabolism and development, 24% in abiotic/biotic stress responses, 3% involved in transcription and signal transduction responses. Two putative resistance genes and a transcription factor were identified among the up regulated sequences. The expression of several candidate genes including a lipase, two non-specific lipid transfer proteins (ns-LTPs), and several wheat pathogenesis-related (PR)-proteins, was evaluated following 4 to 32 days post-inoculation in compatible and incompatible interactions. Results confirmed the higher overall expression of these genes in resistant BW553 compared to susceptible Neepawa, and the differential up-regulation of wheat lipase, chitinase and PR-1 proteins in the expression of the incompatible interaction.

Resistance Function of Rice Lipid Transfer Protein LTP110

  • Ge, Xiaochun;Chen, Jichao;Li, Ning;Lin, Yi;Sun, Chongrong;Cao, Kaiming
    • BMB Reports
    • /
    • 제36권6호
    • /
    • pp.603-607
    • /
    • 2003
  • Abstract Plant lipid transfer proteins (LTPs) are a class of proteins whose functions are still unknown. Some are proposed to have antimicrobial activities. To understand whether LTP110, a rice LTP that we previously identified from rice leaves, plays a role in the protection function against some serious rice pathogens, we investigated the antifungal and antibacterial properties of LTP110. A cDNA sequence, encoding the mature peptide of LTP110, was cloned into the Impact-CN prokaryotic expression system. The purified protein was used for an in vitro inhibition test against rice pathogens, Pyricularia oryzae and Xanthomonas oryzae. The results showed that LTP110 inhibited the germination of Pyricularia oryzae spores, and its inhibitory activity decreased in the presence of a divalent cation. This suggests that the antifungal activity is affected by ions in the media; LTP110 only slightly inhibited the growth of Xanthomonas oryzae. However, the addition of LTP110 to cultured Chinese hamster ovarian cells did not retard growth, suggesting that the toxicity of LTP110 is only restricted to some cell types. Its antimicrobial activity is potentially due to interactions between LTP and microbe-specific structures.