• Title/Summary/Keyword: A-549 cell line

Search Result 203, Processing Time 0.027 seconds

Association of Genetic Variations with Pemetrexed-Induced Cytotoxicity in Non-Small Cell Lung Cancer Cells (비소세포폐암 세포주에서 pemetrexed의 세포독성과 유전학적 다형성과의 상관성 조사)

  • Yoon, Seong-Ae;Choi, Jung-Ran;Kim, Jeong-Oh;Shin, Jung-Young;Zhang, XiangHua;Kang, Jin-Hyoung
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.103-112
    • /
    • 2010
  • Pemetrexed has demonstrated clinical activity in non-small cell lung cancer (NSCLC) as well as other solid tumors. It transports into the cells via reduced folate carrier (RFC) and is polyglutamated by folypolyglutamate synthetase (FPGS). Pemetrexed directly inhibits several folate-dependent enzymes such as thymidylate synthase (TS), dihydrofolate reductase (DHFR), and glycinamide ribonucleotide formyltransferase (GARFT). We investigated the effects of genetic variations and the expression of RFC, FPGS, TS and DHFR enzymes on drug sensitivity to pemetrexed in NSCLC cells. Polymorphisms in RFC, FPGS, and DHFR were genotyped in four NSCLC cells - A549, PC14, HCC-1588, and H226. Real-time RT-PCR and Western blot was performed to evaluate mRNA transcripts and protein of these genes. The cytotoxicity of pemetrexed was measured by SRB assay. In PC14 and H226 cells, increased mRNA expressions of RFC and FPGS were associated with higher cytotoxicity to pemetrexed. 2R/2R genotype of TS and its increased mRNA expression were associated with drug resistance to pemetrexed in A549 cells, whereas 3R/3R genotype in TS with decreased mRNA expression was associated with higher sensitivity in H226 cells. After pemetrexed treatment, an inverse change of DHFR mRNA and protein expression was found. The strongest linkage disequilibrium (LD) was discovered between-1726C>T and -1188A>C SNP of DHFR gene. Our findings suggest the cytotoxic effect of pemetrexed may be associated with genetic polymorphisms and the expression level of genes involved in pemetrexed metabolisms in NSCLC cells.

Cytotoxic and antioxidant properties of four plants belonging to the genus Solanum

  • Dongre, Santoshkumar H.;Badami, Shrishailappa;Godavarthi, Ashok;S., Mahendran;P., Vijayan;B., Suresh
    • Advances in Traditional Medicine
    • /
    • v.8 no.1
    • /
    • pp.86-92
    • /
    • 2008
  • The aim of the study was to evaluate in vitro antioxidant and cytotoxic activities of the methanolic extracts of leaves of Solanum sisymbrifolium, Solanum anguivi multiflora, Solanum barbisetum and Solanum jasminoides. In the in vitro antioxidant screening using ABTS [2,2'-azino-bis (3-ethylbenzo-thiazoline-6-sulphonic acid) diammonium salt] method, the methanol extracts of Solanum jasminoides, Solanum barbisetum and Solanum anguivi multiflora exhibited potent antioxidant activity with $IC_{50}$ values 31.25 $\pm$ 0.35, 40.33 $\pm$ 0.57 and 54.33 $\pm$ 0.57 ${\mu}g$/ml, respectively. Solanum barbisetum also showed potent activity in DPPH [1,1-diphenyl-2-picryl hydrazyl] method with an $IC_{50}$ value of 55.33 $\pm$ 1.66 ${\mu}g/ml. In the cytotoxicity studies, the methanol extract of Solanum barbisetum exhibited moderate activity against Vero, HEp-2, HeLa and A-549 cell lines with $IC_{50}$ values in the range of 83.30 - 127.30 ${\mu}g$/ml. Solanum anguivi multiflora extract also showed moderate activity against Hep-2 cell line with $IC_{50}$ value of 80.13 ${\mu}g$/ml. Solanum barbisetum possessing both the activities requires further investigation.

Purification and Characterization of CDMHK, a Growth Inhibitory Molecule Against Cancer Cell Lines, from Myxobacterium sp. HK1 Isolated from Korean Soil

  • LEE HAN-KI;LEE IN-HYE;YIM JEE-SUN;KIM YONG-HO;LEE SANG-HEE;LEE KISAY;KOO YOON-MO;KIM SANG-JIN;JEONG BYEONG-CHUL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.734-739
    • /
    • 2005
  • Myxobacterium sp. HK1, isolated from Korean soil, degrades cellulose, differentiates to fruiting body, and its 16s rDNA has $95\%$ similarity to Polyangium sp. An anticancer molecule, CDMHK, was identified from culture broth of Myxobacterium sp. HK1, and purified by Diaion HP20, Silica gel, Sephadex LH-20 chromatography, and preparative HPLC using an YMC OSD-A C18 column. The molecular structure and formula were determined to be $C_{l2}H_{l9}N_3O_2$ (M.W 237) by MS spectrometry, 300 MHz $^{1}H\;and\;^{13}C$ NMR. The CDMHK was not active against Escherichia coli, Staphylococcus aureus, and Candida albicans. However, this molecule inhibited the growth of various cancer cell lines. The $ED_{50}$ values of CDMHK were determined to be 0.147, 0.086, 0.18, 0.166, and 0.142 $\mu$g/ml against A549, SK-OV-3, SK-MEL-2, VF498, and HCTl5 cancer cell lines, respectively. In addition, the CDMHK was able to induce apoptosis of the CCRF-CEM cancer cell line, evidenced by DNA fragmentation assay and DAPI staining.

In Vitro Antitumor Properties of an Isolate from Leaves of Cassia alata L

  • Olarte, Elizabeth Iglesias;Herrera, Annabelle Aliga;Villasenor, Irene Manese;Jacinto, Sonia Donaldo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3191-3196
    • /
    • 2013
  • Leaf extracts of Cassia alata L (akapulko), traditionally used for treatment of a variety of diseases, were evaluated for their potential antitumor properties in vitro. MTT assays were used to examine the cytotoxic effects of crude extracts on five human cancer cell lines, namely MCF-7, derived from a breast carcinoma, SK-BR-3, another breast carcinoma, T24 a bladder carcinoma, Col 2, a colorectal carcinoma, and A549, a nonsmall cell lung adenocarcinoma. Hexane extracts showed remarkable cytotoxicity against MCF-7, T24, and Col 2 in a dose-dependent manner. This observation was confirmed by morphological investigation using light microscopy. Further bioassay-directed fractionation of the cytotoxic extract led to the isolation of a TLC-pure isolate labeled as f6l. Isolate f6l was further evaluated using MTT assay and morphological and biochemical investigations, which likewise showed selectivity to MCF-7, T24, and Col 2 cells with $IC_{50}$ values of 16, 17, and 17 ${\mu}g/ml$, respectively. Isolate f6l, however, showed no cytotoxicity towards the non-cancer Chinese hamster ovarian cell line (CHO-AA8). Cytochemical investigation using DAPI staining and biochemical investigation using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-a method used to detect DNA fragmentation-together with caspase assay, demonstrated apoptotic cell death. Spectral characterization of isolate f6l revealed that it contained polyunsaturated fatty acid esters. Considering the cytotoxicity profile and its mode of action, f6l might represent a new promising compound with potential for development as an anticancer drug with low or no toxicity to non-cancer cells used in this study.

Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways

  • Lee, Ju Hee;Min, Dong Suk;Lee, Chan Woo;Song, Kwang Ho;Kim, Yeong Shik;Kim, Hyun Pyo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.476-484
    • /
    • 2018
  • Background: Korean Red Ginseng (steamed and dried white ginseng, Panax ginseng Meyer) is well known for enhancing vital energy and immune capacity and for inhibiting cancer cell growth. Some clinical studies also demonstrated a therapeutic potential of ginseng extract for treating lung inflammatory disorders. This study was conducted to establish the therapeutic potential of ginseng saponins on the lung inflammatory response. Methods: From Korean Red Ginseng, 11 ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and Rh2) were isolated. Their inhibitory potential and action mechanism were evaluated using a mouse model of lung inflammation, acute lung injury induced by intranasal lipopolysaccharide administration. Their anti-inflammatory activities were also examined in lung epithelial cell line (A549) and alveolar macrophage (MH-S). Results: All ginsenosides orally administered at 20 mg/kg showed 11.5-51.6% reduction of total cell numbers in bronchoalveolar lavage fluid (BALF). Among the ginsenosides, Rc, Re, Rg1, and Rh2 exhibited significant inhibitory action by reducing total cell numbers in the BALF by 34.1-51.6% (n = 5). Particularly, Re showed strong and comparable inhibitory potency with that of dexamethasone, as judged by the number of infiltrated cells and histological observations. Re treatment clearly inhibited the activation of mitogen-activated protein kinases, nuclear factor-${\kappa}B$, and the c-Fos component in the lung tissue (n = 3). Conclusion: Certain ginsenosides inhibit lung inflammatory responses by interrupting these signaling molecules and they are potential therapeutics for inflammatory lung diseases.

Experimental Study on Residual Tumor Angiogenesis after Cryoablation

  • Ma, Chun-Hua;Jiang, Rong;Li, Jin-Duo;Wang, Bin;Sun, Li-Wei;Lv, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2491-2494
    • /
    • 2014
  • Objective: To explore the mechanism and significance of tumor angiogenesis by observing changes of microvessel density (MVD) and expression of vascular endothelial growth factor (VEGF) in residual tumor tissues after cryoablation. Materials and Methods: A total of 18 nude mice xenograft models with transplanted lung adenocarcinoma cell line A549 were established and randomly divided into 3 groups when the maximum diameter of tumor reached 1 cm: control, cisplatin (DDP) and cryoablation. The nude mice were sacrificed after 21-d cryoablation to obtain the tumor tissues. Then immunohistochemistry was applied to determine MVD and the expression of VEGF in tumor tissues. Results: The tumor volumes of control group, DDP group and cryoablation group were $1.48{\pm}0.14cm^3$, $1.03{\pm}0.12cm^3$ and $0.99{\pm}0.06cm^3$ respectively and the differences were significant (P<0.01), whereas MVD values were $21.1{\pm}0.86$, $24.7{\pm}0.72$ and $29.2{\pm}0.96$ (P<0.01) and the positive expression rates of VEGF were $36.2{\pm}1.72%$, $39.0{\pm}1.79%$ and $50.8{\pm}2.14%$ (P<0.01), respectively, showing that MVD was proportional to the positive expression of VEGF (r=0.928, P<0.01). Conclusions: Cryoablation can effectively inhibit tumor growth, but tumor angiogenesis significantly increases in residual tumors, with high expression of VEGF playing an important role in the residual tumor angiogenesis.

The Physical and Chemical Properties and Cytotoxic Effects of Acer tegmentosum Maxim. Extracts (산겨릅나무 추출물의 이화학적 특성과 암세포 성장 억제 효과)

  • Shin, In-Cheol;Sa, Jae-Hoon;Shim, Tae-Heum;Lee, Jin-Ha
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.322-327
    • /
    • 2006
  • Food constituents analysis of Acer tegmentosum. Maxim.(Acer TM) stem was carried out according to AOAC method, and the antiradical activity on DPPH and cytotoxicity on human cell lines (AGS, HepG2, A549, MCF-7 and Chang) for the 80% ethylalcohol(EtOH) extracts of Acer TM stem were studied. The antiradical activity on DPPH radical of the ethylacetate(EtOAc) fraction of the bark showed a higher activity than that of $\alpha$-tocopherol, ascorbic acid and BHT. The inhibition activity of the 80% EtOH extracts from Acer TM stem on human cancer cell lines by SRB assay indicated a dose-dependent growth inhibition on most human carcinoma cells. The growth inhibition rate of each human cancer cell line showed 91.3% to AGS, 75.0% to A549, 74.1% to HepG2, and 70.2% to MCF-7 cells, respectively, when the 80% EtOH extract(1 mg/ml) of Acer TM stem was added.

Effects of Loquat (Eriobotrya japonica Lindl.) Ethanol Extracts of Different Aerial Parts on Antioxidant Activity and Antiproliferation of Human Cancer Cells (비파 부위별 에탄올 추출물의 항산화 활성 및 암세포 증식 억제효과)

  • Lee, Hwan;Kim, Yeon-Kyoung;Lee, Hyun-Joo;Lee, Jae-Joon
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.2
    • /
    • pp.211-220
    • /
    • 2016
  • The current study was carried out to determine the effects of the seed, flesh (seedless fruit), and leaf of loquat (Eriobotrya japonica Lindle.) on antioxidative activity and anti-proliferation in human cancer cells. Total polyphenol contents of loquat seed, flesh, and leaf ethanol extracts were found to be 17.77, 32.32, and 28.08 mg/g, respectively. Also, total flavonoid contents of loquat seed, flesh, and leaf ethanol extracts were found to be 18.77, 28.73, and 21.35 mg/g, respectively. The $IC_{50}$ values of DPPH hydroxyl scavenging of loquat seed, flesh, and leaf ethanol extracts were 0.049, 0.063, and 0.042 mg/mL, respectively. Antioxidative indexes of loquat leaf and seed ethanol extracts was highly and it was similar to the BHA and BHT. The antioxidative activities in loquat seed and leaf ethanol extracts were higher in loquat flesh. The antiproliferation effect of loquat seed and leaf ethanol extracts on liver cancer cell line (H460), stomach cancer cell line (AGS) and lung cancer cell line (A549) showed higher values compared with the flesh ethanol extracts. These results indicate that loquat ethanol extracts may play a positive role in antioxidative properties and cancer prevention.

Anticancer and Immune-modulatory Activities of Extracts from Various Parts of Cornus macrophylla Wall. (곰의말채 부위별 추출물의 항암 및 면역증진 효과)

  • Jin, Ling;Han, Jae-Gun;Ha, Ji-Hye;Jeong, Hyang-Suk;Kim, Cheol-Hee;Kwon, Min-Chul;Lee, Hak-Ju;Kang, Ha-Young;Choi, Geun-Pyo;Lee, Yong-Hyeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.5
    • /
    • pp.349-355
    • /
    • 2008
  • Anticancer and immuno-modulatory activities of methanol extracts from different parts, bark, wood and leaf, of Cornus macrophylla Wall. were investigated in this study. All extracts at a concentration of 1.0mg/ml showed relativity low cytotoxicities on human normal kidney cell (HEK293) by approximately 25%. Bark extract of C. macrophylla showed the highest anticancer activity on human lung cancer cell line (A549) and human breast cancer cell line (MCF-7) by 57.4% and 58.7%, respectively, at a concentration of 1.0mg/ml. All extracts enhanced the growth of human B and T cells, showing 38.7% and 65.9% increase compared to control, respectively, by 5 days incubation with bark extract. The secretions of interleukin 6 (IL6) and tumor necrosis factor alpha (TNF-$\alpha$) from human B and T cells were significantly increased by extracts, especially bark extract. B or T cell medium, which contains cytokines (IL 6 and TNF-$\alpha$) secreted by bark extract treatment for 5 days, time-dependently enhanced the growth of NK-92MI cells with the maximal effect at 5th day of incubation. These results suggest that C. macrophylla, especially bark, has the potential for anticancer and immuno-modulatory activities.

Effect of 5-FU and MTX on the Expression of Drug-resistance Related Cancer Stem Cell Markers in Non-small Cell Lung Cancer Cells

  • Yi, Hee;Cho, Hee-Jung;Cho, Soo-Min;Jo, Kyul;Park, Jin-A;Lee, Soo-Han;Chang, Byung-Joon;Kim, Jin-Suk;Shin, Ho-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2012
  • Cancer stem cells (CSCs) are often characterized by the elevated expression of drug-resistance related stem-cell surface markers, such as CD133 and ABCG2. Recently, we reported that CSCs have a high level of expression of the IL-6 receptor (IL-6R). The purpose of this study was to investigate the effect of anticancer drugs on the expression of the drug resistance-related cancer stem cell markers, ABCG2, IL-6R, and CD133 in non-small cell lung cancer (NSCLC) cell lines. A549, H460, and H23 NSCLC cell lines were treated with the anticancer drugs 5-fluorouracil (5-FU; $25{\mu}g/ml$) and methotrexate (MTX; $50{\mu}g/ml$), and the expression of putative CSC markers was analyzed by fluorescent activated cell sorter (FACS) and the gene expression level of abcg2, il-6r and cd133 by reverse transcriptase-polymerase chain reaction (RT-PCR). We found that the fraction of ABCG2-positive(+) cells was significantly increased by treatment with both 5-FU and MTX in NSCLC cells, and the elevation of abcg2, il-6r and cd133 expressions in response to these drugs was also confirmed using RT-PCR. Also, the number of IL-6R(+) cells was increased by MTX in the 3 cell lines mentioned and increased by 5-FU in the H460 cell line. The number of CD133(+) cells was also significantly increased by both 5-FU and MTX treatment in all of the cell lines tested. These results indicate that 5-FU and MTX considerably enhance the expression of drug-resistance related CSC markers in NSCLC cell lines. Thus, we suggest that antimetabolite cancer drugs, such as 5-FU and MTX, can lead to the propagation of CSCs through altering the expression of CSC markers.