• Title/Summary/Keyword: A-형 화강암

Search Result 125, Processing Time 0.021 seconds

Geochemical Study on the Groundwater in Goryeong Area (고령지역 지하수에 대한 지화학적 연구)

  • 이재영;김철호;이인호;고인석
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.162-170
    • /
    • 1998
  • Geochemical characteristics of groundwater in Goryeong area, based on chemical analyses of 34 water samples and mineralogical study of rocks, differ among Nagdong, Hasandong and Jinju formations and Goryeong granite in relation to mineralogical compositions of the rocks. Concentrations of most solutes are higher in groundwater of the sedimentary formations than in that of granite. Ca$\^$2+/ in the sedimentary groundwaters results mainly from reaction of CO$_2$-charged water with calcite and weathered plagioclase. Average groundwater in the Jinju formation is oversaturated with respect to calcite. Major types of groundwaters are hard Ca(HCO$_3$)$_2$ and CaSO$_4$with hardness of 155 mg/1 for Nagdong formation, 150 mg/1 for Hasandong formation and 140 mg/1 for Jinju formation whereas it is soft Ca(HCO$_3$)$_2$with hardness of 90 mg/1 for Goryeong granite. Ca(HCO$_3$)$_2$type resole from dissolution of calcite and plagiodase while CaSO$_4$type results from dissolution of pyrite and partly from domestic pollutants. CaSO$_4$type may indicate that the sedimentary groundwaters are more evolved geochemically than the granitic groundwater, but it is not obvious because the type might be affected by the dissolution of pyrite and domestic pollutions. Prite is expected to occur as a stable sulfide in the gray∼dark gray arkosic sandstones formed under reducing environment.

  • PDF

Deformation structures of the Jurassic Ogcheon granite and the Honam Shearing, Ogcheon Area, Korea (옥천지역 쥬라기 옥천화강암의 변형구조와 호남전단운동)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2010
  • The Jurassic Daebo Ogcheon granite is distributed in the Ogcheon area which is located in the central part of the Ogcheon Belt, Korea. This paper newly examines the timing of Honam shearing on the basis of the petrofabric researches on the deformation structures of the Ogcheon granite. The structural shape of Ogcheon granite is mainly characterized by a wedge shaped of E-W trend and an elongate shape of ENE trend in geological map and by contacts parallel to the regional S1 foliation in the host Ogcheon supergroup. It indicates that the pluton was permittedly emplaced after the S1 formation. The main deformation structures are marked by a solid-state tectonic foliation of N-S trend, which passes through the contact of the pluton, and by an aplitic dyke of E-W trend, and by sinistral, NW and E-W oriented shear zones on the eastern border of the pluton. The petrofabric study on the main deformation structures suggests that the tectonic foliation and the aplitic dyke were formed by the Honam dextral strike-slip shearing of (N)NE trend at ca. $500{\sim}450^{\circ}C$ deformation temperature, and that the sinistral shear zones could be induced by the dextral rotation of the pluton from its original site of intrusion, that is, by the shear strain which is due to sliding of the pluton past the host rocks. The history of emplacement and deformation of the Ogcheon granite and the previous results on the timing of Honam shearing would be newly established and reviewed as follows. (1) Early~Middle Jurassic(187~170 Ma); intrusion of syntectonic foliated granite related to Early Honam shearing, (2) Middle Jurassic(175~166 Ma); main magmatic period of Jurassic granitoids, the permitted emplacement of the Ogcheon granite, (3) Middle~Late Jurassic(168~152 Ma); main cooling period of Jurassic granitoids, the deformation of the Ogcheon granite related to Late Honam shearing. Thus, this study proposes that the Honam shear movement would occur two times at least during 187~152 Ma (ca. 35 Ma) through the intertectonic phase of 175~166 Ma.

A Study on the Information of Landforms in the vicinity of the Hantan River (한탄강(漢灘江) 일대(一帶)의 지표기복(地表起伏)에 관한 정보(情報))

  • Kim, Joo-Hwan
    • Journal of the Speleological Society of Korea
    • /
    • no.72
    • /
    • pp.19-30
    • /
    • 2006
  • The purpose of this study is to clarified the geology and geomorphic characteristics of the Hantan River Basin. In this area, some kind of landforms are developed such as pre-land forms, lava plateau, and present landforms etc. Some river terraces are peculiar features in the area. Some conclusions are as follows : The vicinity of the Hantan River is lava plateau formed from the volcanic activity. Some steptoes are located in the lava plateau. Baekeuiri formation means the river bed boulder beneath the lava formation. The development of drainage patterns are unstable and the bifurcation ratio, the ratio of mean length of the river are lower than the other rivers. The relative height of the terraces is about $5{\sim}25m$ and the terraces are alluvial terraces. In the Jiktang Fall area, bedrock is granite and basalt plateau covered the bedrock. In that point, the old erosion surface is relatively steeper than the horizontal-basalt plateau. Vertical columnar joints are developed and weathering materials creep on the valley wall. The cross section of the landform of the Kosukjung vicinities are somewhat different from the landforms of Jiktang Fall. The bedrock near the Kosukjung is granite that is the same with the Jiktang Fall. But the cross section shows a asymmetrical curve from each side.

The Significance of the Distribution Patterns of Certain Elements in the Stream Sediments' of the St. Austell Granite Mass, Cornwall (영국(英國)콘웰주(州)의 성(聖)오우스텔 화강암괴(花崗岩塊)에 대(對)한 지구화학적(地球化學的) 연구(硏究))

  • Lee, Jae Yeong;Olinze, Simon Kaine
    • Economic and Environmental Geology
    • /
    • v.2 no.4
    • /
    • pp.23-71
    • /
    • 1969
  • Sediment samples were taken at about half-mile intervals from all the inajor rivers draining the St. Austell granite mass. The minus 80 mesh(B.S.S.) fraction of each sample was analysed, using semiquantitative methods, for sodium, potassium, lithium, phosphorus, nickel, chromium, tin, tungsten, arsenic copper, zinc and lead. The work was carried out with the view to gaining further information as to the geographical distribution of such different granite facies as might axist, and to investigate the geochemical dispersion of these elements with relation to mineralisation in this area. The sesults confirm Exley's suggestion that the mass consists of two major granite intrusions, the earlier undifferentiated one is joined on the west by a later differentiated intrutive. During the work grid deviation maps proved particularly useful in obtaining data concerning the nature of the granite but frequency diagrams were not particularly helpful. All the known lode areas were associated with stream sediments containing anomalously high concentrations of lode metals and it is concluded that these high concentrations are due premarily to lode material transferred to the streams in the form of tailings lost during milling operations.

  • PDF

Geochemistry and Stable Isotopes of Carbonated Waters in South Korea (남한 탄산수의 지구화학적 특성과 안정동위원소 조성)

  • 윤정아;김규한
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.116-124
    • /
    • 2000
  • Geochemical and isotopic analyses were carried out to investigate hydrochemical characteristics, source of carbon species in the carbonated waters in South Korea. Most Korean carbonated waters from different geologic settings are characterized by a Ca-HCO$_3$type with a relatively low pH range from 5.3 to 6.3 (avg. 6.0). The concentrations of cations and anions in the carbonate waters are in the order of Ca$^{2+}$>Na$^{+}$>Mg$^{2+}$>Si$^{4+}$>Fe$^{2+}$>K$^{+}$ and HCO$_3$$^{-}$>SO$_4$$^{2-}$>Cl$^{-}$, respectively. The HCO$_3$$^{-}$ ion is more enriched in the carbonated water from the sedimentary rock and granitic rock of Mesozoic age in the Gyungsang basin(GII) and the Precambrian metamorphic rock and Jurassic granitic rocks of the Gyunggj massif in the Gangwon province(GⅠ) than those of the meta-sedimentary rock and granite in the Ogcheon zone(GⅢ). Based on the oxygen and hydrogen isotopic data, the carbonated waters are derived from the meteoric water, showing apparent latitude and altitude effects. The $delta$$^{13}$C values of carbon species in the carbonated water are in between -6.23 and 0.0 $textperthousand$, suggesting inorganic source of carbon originated from the carbonate mineral and carbonate rock in the aquifer.

  • PDF

Physicochemical Variation by Weathering Degree of Granite from the Mireuksaji Temple Stone Pagoda, Iksan, Korea (익산 미륵사지석탑 화강암의 풍화에 의한 물리화학적 특성변화)

  • Yang, Hee-Jae;Han, Min-Su;Kim, Sa-Dug;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.11-24
    • /
    • 2008
  • A physical characteristics and chemical compositions change by weathering on the granite were examined for the conservation treatment of the Mireuksaji temple stone pagoda. The natural weathered granite was collected from the Mt. Mireuk, and divided into the classification standards based on weathering degrees and strength measured by rock-test hammer. The results from comparison of the strength measured by undestructive rock-test hammer and the strength values converted from ultrasonic velocity showed that each strength measurement value was proportionate. The water absorption of the sample was 1.68 to 0.20%. The F-type of fresh rock was not naturally saturated and the WW-type was naturally saturated but took quite a long time. The water absorption was increased gradually in order of SW-type, the MW-type and the HW-type according to weathering condition. The CW-type samples showed the highest water absorption among the weathered classification samples. Through dyeing test, it was found out that only the feldspar was dyed out of the F-type and the WW-type. The SW-type and the MW-type were distinguished by the fact that plagioclase being dyed. And dyed area was expanded to quartz crack in HW-type and CW-type. Physical change by weathering of the rock-forming minerals could be classified with 3 grades. Through the XRD analysis, albite among the rock-forming mineral showed remarkable decrease. SEM-EDX analysis of the component change in the rock-forming minerals such as biotite, plagioclase, and orthoclase, showed that in case of highly-weathered grade samples compared with fresh samples, contents of the $Al_2O_3$, $K_2O$, $Na_2O$ increase and CaO, MgO decrease in the biotite, the CaO, $K_2O$ increase and $Na_2O$ decrease in the plagioclase, the $Al_2O_3$ a little increase and $K_2O$, $Na_2O$ decrease in the orthoclase. The results of extracted cation analysis using the powder samples of each weathering grade, the CaO, $Na_2O$, $K_2O$ and MgO are highly chemical variations in rock forming minerals and positive variation show high in the weathering grade of the WW-type and CW-type. This research will be used as an importance data to establish a plan for conservation treatment of composed stone in the Mireuksaji temple stone pagoda.

  • PDF

Genesis of the acidic metavolcanic rocks distributed around the Chungju iron deposit in the Gyemyeongsan Formation (계명산층 내의 충주 철광상 주변에 분포하는 산성 변성화산암의 성인)

  • Park Maeng-Eon;Kim Gun-Soo;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.169-179
    • /
    • 2005
  • Acidic metavolcanic rocks distributed around the Chungju iron deposit show significantly high abundances of rare earth elements and high field strength elements. Relatively high ${\epsilon}_{Nd}$(0) values and lack of negative Nb anomaly suggest that assimilation of crustal material is not involved in their generation. They are plotted within the within-plate environment according the tectonic discrimination diagrams. Such geochemical characteristics are very similar to the acidic metavolcanic rocks of Munjuri Formation. They also show geochemical characteristics of Al-type magma of Eby (1992). All such diagnostic characters indicate differentiation of mantle-derived magma produced from the rift environment, related to the breakup of continent. In contrast to the alkali granites and the rare metal deposit both having age of c. 330 Ma, Sm-Nd isotopic data of the acidic metavolcanic rocks do not form well defined isochron. However, the alkali granites reveal low ${\epsilon}_{Nd}$(0) values, while the acidic metavolcanic rocks and the rare metal deposit both have significantly higher ${\epsilon}_{Nd}$(0) values. Considering such differences, we propose following generation hypothesis: The acidic metavolcanic rocks around Chungju iron deposit was erupted at 750 Ma as rest of the acidic metavolcanic rocks of Gyemyeongsan and Munjuri Formations. About 330 Ma ago, partial melting of existing Al-type igneous materials and some old crustal materials produced alkali granite. The rare metal deposit was also produced by redistribution of related materials within the acidic volcanics due to hydrothermal activities occurred at the same time. Sm-Nd isotopic systematics of the acidic metavolcanic rocks were disturbed during the regional metamorphic event at ca. 280 Ma.

Petrology and petrochemistry of the Jurassic Daebo granites in the Pocheon-Gisanri area (포천 - 기산리 일대에 분포하는 쥬라기 대보화강암류의 암석 및 암석화학)

  • 윤현수;홍세선;이윤수
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • The study area is mostly composed of Precambrian Gyeonggi gneiss complex, Jurassic Daebo granites, Cretaceous tonalite and dykes, and so on. On the basis of field survey and mineral assemblage, the granites can be divided into three types; biotite granite (Gb), garnet biotite granite (Ggb) and two mica granite (Gtm). They predominantly belong to monzo-granites from the modes. Field relationship and K-Ar mica age data in the surrounding area suggest that intrusive sequences are older in order of Gtm, Ggb and Gb. Gb and Ggb, major study targets, occur as medium-coarse grained rocks, and show light grey and light grey-light pink colors, respectively. Mineral constituents are almost similar except for opaque in Gb and garmet in Ggb. Gb and Ggb have felsic, peraluminous, subalkaline and calc alkaline natures. In Harker diagram, both rocks show moderately negative trends of $TiO_2$, MgO, CaO, $Al_2O_3$, $Fe_2O_3$(t), $K_2O$ and $P_2O_5$ as $SiO_2$ contents increase. Among them, $TiO_2$, MgO and CaO show two linear trends. From the trends and the linear patterns in AFM, Sr-Ba and Rb-Ba-Sr relations, it is likely that they were originated from the same granitic magma and Ggb was differentiated later than Gb. REE concentrations normalized to chondrite value have trends of parallel LREE enrichment and HREE depletion. One data of Ggb showing a gradually enriched HREE trend may be caused by garnet accompaniment. Ggb have more negative Eu anomalies than Gb, suggesting that plagioclase fractionation in Ggb have occurred much stronger than that in Gb. In modal (Qz+Af) vs. Op, Gb and Ggb belong to magnetite-series and ilmenite-series, respectively. From the EPMA results, opaques of Gb are magnetite and ilmenite, and those of Ggb are magnetite-free ilmenite or not observed. Bimodal distribution of magnetic susceptibility reveals two different granites of Gb (332.6 ${mu}SI$) and Ggb (2.3 ${mu}SI$). Based on the paleomagnetic analysis as well as modal analysis, the main susceptibilities of Gb and Ggb reside in magnetite and mafic minerals, respectively. They belong to S-type granite of non-magnetic granite by susceptibility value. In addition, $SiO_2$ contents, $K_2O/Na_2O$, A/CNK molar ratio and ACF diagram support that they all belong to S-type granites.

Major Molybdenum Mineralization and Igneous Activity, South Korea (남한의 주요 몰리브덴 광화작용과 화성활동)

  • Choi, Seon-Gyu;Koo, Min-Ho;Kang, Heung-Suk;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.109-122
    • /
    • 2011
  • The major Mo deposits in South Korea were formed during the Jurassic Daebo orogeny, the Late Cretaceous and the Tertiary post-orogenic igneous activities, and are characterized by a variety of genetic types such as pegmatite, greisen, skarn, porphyry and vein types. The Jangsu mine is a pegmatite-style deposit which is genetically related to the Jurassic ilmenite-series two-mica granite with the Mo mineralization age of $159.6{\pm}4.5$ Ma. The Geumseong mine occurs as a skarn/porphyry-style deposit associated with highly fractionated granite. Its age of Mo mineralization within aplitic cupola is about 96.5~l07.5 Ma. The Yeonil mine is a porphyry-style deposit, and the Geumeum mine is a veinlet-style deposit along the fracture zone with their mineralization ages of $58.4{\pm}1.6$ and $54.4{\pm}1.2$ Ma, respectively. The contrasts in the style of Mo mineralization in Korea reflect the different environment of the related magmatism. The Jurassic mineralization, being related to deep-seated granitoids, occurs as a pegmatite-style deposit, whereas the Cretaceous one, being related to subvolcanic granitoids, occurs as skarn/porphyry/vein-type ore deposits. The Tertiary Mo mineralization has a close relationship with the igneous activities associated with the Tertiary basin formation along the east coast, Korean peninsular.

Microcrack Orientations in Tertiary Crystalline Tuff from Northeastern Gyeongsang Basin (경상분지 북동부의 제3기 결정질 응회암에서 발달하는 미세균열의 방향성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.115-135
    • /
    • 2009
  • We have studied general orientational characteristics of microcracks distributed in Tertiary crystalline tuff from the northeastern part of the Gyeongsang Basin. 108 sets of microcracks on horizontal surfaces of 6 rock samples from Heunghae-eup and Cheongha-myeon, Pohang-si areas were distinguished by image processing. Those microcrack sets show a distinct linear array in 38 images. Whole domain of the directional angle(${\theta}$)-frequency(N) chart for crystalline tuff can be divided into 20 domains in terms of the phases of the distribution of microcracks. From the related chart, microcrack sets show preferred orientation which are coincident with the direction of vertical common joints. Consequently, the potential for macroscopic vertical joints in a rock body can be inferred from the directional angle showing high frequency in each domain of the related chart. This joint pattern is nearly the same in Mesozoic granites from Seokmo-do, Gwanghwa-gun. From the rose diagram for orientations of microcrack in crystalline tuff, orientations of dominant sets of microcracks in terms of frequency orders reflect representative orientations of maximum principal stress acted on crystalline tuff. Meanwhile, orientations of microcracks in crystalline tuff were compared with those of open microcracks in Bulgugsa granites from the southwestern part of the Gyeongsang Basin, and vertical rift/grain planes from Mesozoic granite quarries in Korea. In regional distribution chart, the agreement of distribution pattern between above two types of microcrack sets and vertical planes suggests that microcrack systems developed in crystalline tuff probably occur regionally in Mesozoic granites in Korea.