• Title/Summary/Keyword: A-형 화강암

Search Result 125, Processing Time 0.025 seconds

Geochemical Characteristics of A-type granite in Dongcheondong, Gyeongju (경주 동천동 일대에 분포하는 A-형 화강암의 지화학적 특성)

  • Myeong, Bora;Ju, Jiwon;Kim, Junghoon;Jang, Yundeuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.271-280
    • /
    • 2017
  • The Dongcheondong granite is alkali feldspar granite in Dongcheondong, Gyeongju. The granite is coarse grained and consists of alkali feldspar, quartz, amphibole, and biotite. Alkali feldspar is perthitic orthoclase and quartz often shows undulatory extinction. Plagioclase often shows albite twins, and biotite and amphibole emplace as interstitial minerals. The Dongcheondong granite is plotted in A-type area having high ($Na_2O+K_2O)/Al_2O_3$ and low (MgO+CaO)/FeOT ratio. The Dongcheondong A-type granite has higher $SiO_2$, $Na_2O$, $K_2O$, Zr, Y, and REE contents (except for Eu) and lower $TiO_2$, $Al_2O_3$, CaO, MgO, Sr, Ba, and Eu contents than I-type granites in Gyeongsang Basin. These results show that the geochemical characteristics of the Dongcheondong A-type granite are distinguished from I-type granite in Gyeongsang Basin. A-type granite in the Dongcheondong is thought to has been generated by partial melting of I-type tonalite or granodiorite.

Geochemical Studies on Petrogenesis of the Cretaceous Myeongseongsan Granite in the Northwestern Gyeonggi Massif (경기육괴 북서부에 분포하는 백악기 명성산 화강암의 성인에 대한 지화학적 연구)

  • Yi, Eun Ji;Park, Ha Eun;Park, Young-Rok
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.327-339
    • /
    • 2017
  • The Cretaceous Myeongseongsan Granite in the northwestern Gyeonggi Massif consists of a major pale pink-colored biotite monzogranite and a minor white-colored biotite alkaligranite. Low Sr and high Ba concentrations, negative Eu-anomalies in REE plot, negative Sr anomalies in spider diagram, a negative correlation between Sr and Rb, and positive correlations between Sr and Ba and $Eu/Eu^*$ indicate that a fractional crystallization of both plagioclase and K-feldspar played a significant role during magma evolution. The Myeongseongsan Granite is plotted in I-& S-type granites on I, S, A-type granite classification scheme. While the biotite monzogranite is plotted in unfractionated I-& S-type granite, the biotite alkaligranite is plotted in fractionated I-& S-type granite, which indicates that the biotite alkaligranite is a more differentiated product. In order to elucidate the nature of the protoliths of the peraluminous Myeongseongsan magma, we plotted in $Al_2O_3/TiO_2$ vs. $CaO/Na_2O$ and Rb/Sr vs. Rb/Ba diagrams, and they suggest that the Myeongseongsan Granite was derived from clay-poor metagreywackes and meta-psammites or their igneous counterparts. Whole-rock zircon saturation temperature indicates that the Myeongseongsan magma was melted at $740-799^{\circ}C$.

Petrology and Geochemical Characteristics of A-type Granite with Particular Reference to the Namsan Granite, Kyeongju (경주 남산일대의 A-형 화강암의 암석학 및 지화학적 특성)

  • 고정선;윤성효;이상원
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.142-160
    • /
    • 1996
  • Petrological and geochemical characteristics of A-type granite were studied from the Namsan and Tohamsan granites in the vicinity of Kyeongju city, southeastern Korea. The Namsan granite consists of hypersolvus alkali-feldspar granite in the northern part and subsolvus alkali-feldspar to biotite granite in the southern part. This hypersolvus granite usually has miarolitic cavities and is characteristically composed of quartz, single homogeneous one-feldspar (alkali feldspar) forming tabular microperthite crystals, or micrographic intergrowth with quartz, and interstitial biotite (Fe-rich annite), alkali amphibole (riebeckitic arfvedsonite) and fluorite. Petrographic and petrochemical characteristics indicate that the hypersolvus granite and subsolvus granite from the Namsan belogn to the A-type and I-type granitoid, respectively. The A-type granite is petrochemically distinguished from the I-type Bulgugsa granites of Late Cretaceous in South Korea, by higher abundance of $SiO_2$, $Na_2O$, $Na_2O+K_2O$, large highly charged cations such as Rb, Nb, Y, Zr, Ga, Th, Ce. U the REEs and Ga/Al ratio, and lower abundance of $TiO_2$, $Al_2O_3$, CaO, $P_2O_5$, MnO, MgO, Ba, Sr, Eu. The total abundance of REEs is 293 ppm to 466 ppm, showing extensively fractionated granitic compositon, and REEs/chondrite normalized pattern shows flat form with strong Eu '-' anomaly ($Eu/Eu^{\ast}$=0.03-0.05). A-type granite from the Namsan area is thought to have been generated late in the magmatic/orogenic cycle after the production of I-type granite and by direct, high-temperature partial melting of melt-depleted, relatively dry tonalitic/granulitic lower crustal material with underplating by mantle-derived basaltic magmas associated with subduction.

  • PDF

Geochemistry and Petrogenesis of the Granitic Rocks in the Vicinity of the Mt. Sorak (설악산 부근의 화강암류에 대한 지구화학 및 성인)

  • Kyoung-Won Min;Sung-Bum Kim
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.35-51
    • /
    • 1996
  • The granitic rocks in the vicinity of the Mt. Sorak, the northeastern part of the NE-SW elongated Mesozoic granitic batholith in the Kyeonggi massif, consist of granodiorite, biotite granite, two-mica granite and alkali feldspar granite. Variations In major and most trace elemental abundances show a typical differentiation trend in a granitic magma. Granitic rocks all display a calc-alkaline trend in the AFM diagram. Also, In the ACF diagram discriminating between I- and S-type granitic rocks, granodiorite and most biotite granite in the southeastern area represent I-type and magnetite-series characteristics, while most biotire granite and two-mica granite in the northwestern area exhibit S-type and ilmenite-series ones.According to recent studies of the granitle rocks In the Inje-Hongcheon district. all ihe granitic rocks distributed in the northeastern part of the Kyeonggi massif have been classified as late Triassic to early Jurassic Daebo granite. With reference of the formerly published ages, an age oi $125.6{\pm}4.4$ Ma calculated by the slope in the plot of $^{87}Rb/^{86}Sr-^{87}Sr/^{86}Sr$ for the biotite granite samples from the southeastern area is inferred as an emplacement age for the granitic rocks in the vicinity of the Mt. Sorak. On the basis of elemental variations and Sr isotope compositions, an possible evolutional process for the granitic magmas in this area is suggested. The primary magma of I-type and magnetite-series generated about 125 Ma by partial melting of igneous originated crustal materials, might be emplaced and evolved through fractional crystallization, convection and assimilation of the surrounding Precambrian metasediments to become S-type and ilmenlte-serles in the outer area, and then solidified to granodiorite, biotite granite and two-mica granite.At the latest stage, the evolved hydrothermal solution altered the formerly solidified biotite granite to alkali feldspar granite and probably later local igneous activities affected the alkali feldspar granite again.

  • PDF

Granite Landforms in the Vicinity of Seungil-gyo Bridge at Cheorwon, Central Korea (철원군 승일교 인근의 화강암 지형 경관)

  • LEE, Min-Boo;HAN, Joo-Yup;KIM, Chang-Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.27-37
    • /
    • 2012
  • This study investigated granite landforms formed by Hantan-gang fluvial erosion and deposition, or by weathering in the area neighboring the Seungil-gyo bridge in Cheorwon-gun Gangwon-do Korea, in which the contact zone of Myeongseongsan granite and Cheorwon lava plateau creates a unique landform. Major granite landforms are deeply weathered hill, sheet erosional landform, paleo-landform surface and paleosoil, micro-fluvial landforms such as pothole and groove, granite rampart, sand bar and boulder bar, former riverbed. And river cliffs on a weakly weathered dome act as a barrier to lateral shifting of the river.

Geochemistry of the Kwanaksan alkali feldspar granite: A-type granite\ulcorner (관악산 알칼리 장석 화강암의 지구화학 : A-형 화강암\ulcorner)

  • S-T.Kwon;K.B. Shin;H.K. Park;S.A. Mertzman
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.31-48
    • /
    • 1995
  • The Jurassic Kwanaksan stock, so far known to be composed of biotite granite only, has the mineral assemblage of quartz+K-feldspar+plagioclase+biotite${\pm}$gernet. The lithology of the stock is classified as alkali feldspar granite by their mode and plagioclase compositions (An<5). Subsolvus feldspars, rather early crystallization of biotite, and shallow emplacement depth estimated from Q-Ab-Or diagram suggest hydrous nature of the magma, which contrasts with anhydrous A-type like geochemistry described below. Major and trace element compositions of the Kwanaksan stock are distinct from those of the adjacent Seoul batholith, suggesting a genetic difference between the two, The Kwanaksan stock shows geochemical characteristics similar to A-type granite in contrast to most other Mesozoic granites in Korea, in that it has high $SiO_2$(73~78wt%), $Na_2O+K_2O$, Ga(27~47 ppm). Nb(22~40 ppm), Y(48~95 ppm), Fe/Mg and Ga/Al, and low CaO(<0.51 wt%). Ba (8~75 ppm) and Sr(2~23 ppm). However, it has lower Zr and LREE and higher Rb(384~796 ppm) than typical A-type granite. LREE-depleted rare earth element pattern with strong negative Eu anomaly of previous studies is reinterpreted as representing source magma characteristics. The residual material during partial melting is not compatible with pyroxenes, amphibole or garnet, while significant amount of plagioclase is required. Similarity of geochemistry of the Kwanaksan stock to A-type granite suggests the origin of the stock has a chose relationship with that of A-type granite. These observations lead us to propose that the Kwanaksan stock was formed by partial melting of felsic source rock.

  • PDF

Geochemical Characteristics of Precambrian, Jurassic and Cretaceous Granites in Korea (한국(韓國)에 분포(分布)하는 선(先)캠브리아기(紀), 쥬라기(紀) 및 백악기화강암(白堊紀花崗岩)의 지화학적(地化學的) 특징(特徵))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.20 no.1
    • /
    • pp.35-60
    • /
    • 1987
  • The geochemical characteristics including minerals, major and trace elements chemistries of the Proterozoic, Jurassic and Cretaceous granites in Korea are systematically summarized and intended to decipher the origin and crystallization process in connection with the tectonic evolution. The granites in Korea are classified into three different ages of the granites with their own distinctive geochemical patterns: 1) Proterozoic granitoids; 2) Jurassic granites(cratonic and mobile belt); 3) Cretaceous-Tertiary granites. The Proterozoic granite gneisses (I-type and ilmenite-series) formed by metamorphism of the geochemically evolved granite protolith. The Proterozoic granites (S-type and ilmenite-series) produced by remobilization of sialic crust. The Jurassic granites (S-type and ilmenite-series) were mainly formed by partial melting of crustal materials, possibly metasedimentary rocks. The Cretaceous granites (I-type and magnetite-series) formed by fractional crystallization of parental magmas from the igneous protolith in the lower crust or upper mantle. The low temperature ($315{\sim}430^{\circ}C$) and small temperature variations (${\pm}20{\sim}30^{\circ}C$) in the cessation of exsolution of perthites for the Proterozoic and Jurassic granites might have been caused by slow cooling of the granites under regional metamorphic regime. The high ($520^{\circ}C$) and large temperature variations (${\pm}110^{\circ}C$) of perthites for the Cretaceous granites postulate that the rapid cooling of the granitic magma. In terms of the oxygen fugacity during the feldspar crystallization in the granite magmas, the Jurassic mobile belt granites were crystallized in the lowest oxygen fugacity condition among the Korean granites, whereas the Cretaceous granites in the Gyeongsang basin at the high oxygen fugacity condition. The Jurassic mobile belt granites are located at the Ogcheon Fold Belt, resulting by closing-collision situation such as compressional tectonic setting, and emplaced into a Kata-Mesozonal ductile crust. The Jurassic cratonic granites might be more evolved either during intrusion through thick crust or owing to lower degree of partial melting in comparison with the mobile belt granites. The Cretaceous granites are possibly comparable with a continental margin of Andinotype. Subduction of the Kula-Pacific ridge provided sufficient heat and water to trigger remelting at various subcrustal and lower crustal igneous protoliths.

  • PDF

Crystal Morphology of Zircon in Granitoids from the Mt. Keumjeong District, Pusan, Korea (부산 금정산 지역 화강암류의 저어콘에 대한 형태학적 연구)

  • 이윤종;윤성효;김상욱;고인석;황상구;정원우;김중욱;이철락;하야시마사오
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.71-80
    • /
    • 1999
  • We report zircon morphology of granitoids in the Mt. Keumjeong district, Pusan. There are a series of granitoids in the study area of the late Cretaceous: granodiorite, hornblende granite, adamellite, tonalite, biotite granite, and micrographic granite. Generally, the shapes of zircon crystals are short prismatic to middle prismatic and are dominant in {loo) prism and {101) pyramid in total average morphological data of the granitoids. The crystal forms of zircon in the granitoids can be distinguished by the PPEF diagram and the prism index (PI). The prism index values of zircon crystal forms in granodoirite and hornblende granite are higher than those of tonalite and micrographic granite. The finishing temperature range ($820~800^{\circ}C$) for crystallization of zircon crystals in granodoirite and hornblende granite is higher than the temperature ($790~770^{\circ}C$) at which the zircon crystals are created in tonalite and micrographic granite. The last differentiates (biotite granite and micrographic granite) have mainly intermediate zircon ({110)={100)) crystals, respectively. As differentiation proceeds, the zircons of granitoids become from short prismatic to middle prismatic in the each granitoid types.

  • PDF

Review of Radiometric Ages for Phanerozoic Granitoids in Southern Korean Peninsula (남한 지역 현생 화강암류의 연대측정 결과 정리)

  • Cheong, Chang-Sik;Kim, Nam-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.173-192
    • /
    • 2012
  • Previous age data were reviewed for 98 sites of Phanerozoic granitoids in the southern part of the Korean Peninsula. Subduction-related granitic magmatism has occurred in southeastern Korea since Early Permian. In the middle part of the Yeongnam massif, arc-related tonalites, trondhjemites, granodiorites, and monzonites were emplaced during Early Triassic. After Middle Triassic continental collision in central Korean Peninsula, post-collisional shoshonitic and high-K series and A-type granitoids were emplaced in the southwestern Gyeonggi massif and central Okcheon belt during Late Triassic. Early Jurassic calc-alkaline granitoids are mostly distributed in the middle part of the Yeongnam massif and Mt. Seorak area, northeastern Gyeonggi massif. On the other hand, Middle Jurassic calc-alkaline granitoids pervasively occur in the Okcheon belt and central Gyeonggi massif. This selective distribution could be attributed to the change in the position of trench, subduction angle, or the direction of subduction. Most Cretaceous and Paleogene granitoids are distributed in the Gyeongsang basin, with the latter emplaced exclusively along the eastern coastline. Outside the Gyeongsang basin, Cretaceous granitoids emplaced in relatively shallow depth occur in the Gyeonggi massif and central Okcheon belt.

The Contact Metamorphism Due to the Intrusion of the Ogcheon and Boeun granites (옥천화강암과 보은화강암 관입에 의한 접촉변성작용)

  • 오창환;김창숙;박영도
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.133-149
    • /
    • 1997
  • In the metapelites around the Ogcheon granite, the metamorphic grade increases from the biotite zone through the andalusite zone to the sillimanite zone towards the intrusion contact. In the metabasites around the Boeun granite, the metamorphic grade increases from transitional zone between the greenchist and amphibolite facies through the amphibolite facies to the upper amphibolite facies towards the intrusion contact. In the Doiri area locating near the intrusion contact of the Boeun granite, sillimanite- and andalusite-bearing metapelites are found with in 500 m away from the contact. The evidence described above indicates that the Ogcheon and Boeun granites caused low-P/T type contact metamorphism to the country rocks. The P-T condition of contact metamorphism due to the intrusion of the Ogcheon granite is $540{\pm}40^{circ}C, 2.8{\pm}0.9$ kb. The temperature condition of contact metamorphism due to the intrusion of the Boeun granite is $698{\pm}28^{\circ}C$. The wide compositional range of amphibole and plagioclase in the metabasites around the Boeun granite is due to the immisibility gab of amphibole and plagioclase and unstable relict composition resulted from an incomplete metamorphic reaction. The compositional range of stable amphibole and plagioclase decreases as a metamorphic grade increases due to a close of immiscibility gab. The thermal effect of contact metamorphism due to the intrusion of the Ogcheon and Boeun granites, are calculated using the CONTACT2 program based on a two dimensional finite difference method. In order to estimate the thermal effect of an introduced pluton, a circle with 10 km diameter and a triangle with 20 km side are used for the intrusion geometries of the Ogcheon granite and the Boeun granite, respectively. The results from the field and modeling studies suggest that the intrusion temperatures of the Ogcheon granite close to $800^{\circ}C$ and the intrusion temperature of the Boeun granite is higher than $1000^{\circ}C$. However, the intrusion temperatures can be lower than the suggested temperature, if the geothermal gradient prior to the intrusion of the Ogcheon and Boeun granites was higher than the normal continental grothermal gradient.

  • PDF