• 제목/요약/키워드: A state of the Art

검색결과 2,275건 처리시간 0.026초

1990년대 이후 한국 기업미술관의 현황 및 유형에 관한 연구 (A Study on Current State and Typology of Korea Company Gallery since 1990)

  • 김혁기
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.3203-3212
    • /
    • 2014
  • 기업의 문화 예술 지원은 메세나 운동으로부터 시작되었고 이후에는 소비자의 문화욕구를 만족시키고 기업의 이미지를 향상시키며 시대의 요구와 변화로서 기업의 활동을 증가시키는 문화마케팅으로 변화되었다. 그러므로 많은 기업들은 다양한 영역에서 문화마케팅 활동을 발전시키고 있다. 특히 아트마케팅은 예술 활동에 대한 관심과 기대치를 올리고 생산품에 대한 비판적인 관점과 삶의 기준을 높이는 역할로 인해 중요한 업무가 되었다. 그러므로 기업은 전략적 차원과 공공복지에 기여하는 차원에 따르는 이미지 마케팅 활동으로서 자사건물이나 별도의 공간에 전시공간을 제공해 예술과 관련된 다양한 전시, 스폰서, 교육 프로그램을 제공한다. 본 논문은 문화마케팅의 개념, 기업의 문화 예술 지원현황 및 아트 마케팅의 개념과 유형을 분류한다. 동시에 문화마케팅 수단으로서 기업 미술관의 전시공간의 유형을 분류하고 프로그램의 분석을 통해 기업 미술관의 특성 및 유형을 파악한다.

Performance-based earthquake engineering in a lower-seismicity region: South Korea

  • Lee, Han-Seon;Jeong, Ki-Hyun
    • Earthquakes and Structures
    • /
    • 제15권1호
    • /
    • pp.45-65
    • /
    • 2018
  • Over the last three decades, Performance-based Earthquake Engineering (PBEE) has been mainly developed for high seismicity regions. Although information is abundant for PBEE throughout the world, the application of PBEE to lower-seismicity regions, such as those where the magnitude of the maximum considered earthquake (MCE) is less than 6.5, is not always straightforward because some portions of PBEE may not be appropriate for such regions due to geological differences between high- and low-seismicity regions. This paper presents a brief review of state-of-art PBEE methodologies and introduces the seismic hazard of lower-seismicity regions, including those of the Korean Peninsula, with their unique characteristics. With this seismic hazard, representative low-rise RC MRF structures and high-rise RC wall residential structures are evaluated using PBEE. Also, the range of the forces and deformations of the representative building structures under the design earthquake (DE) and the MCE of South Korea are presented. These reviews are used to propose some ideas to improve the practice of state-of-art PBEE in lower-seismicity regions.

토목공학에서의 자기유변 유체 감쇠기를 이용한 반능동 제어 시스템: 최신 연구 동향 (Semiactive Control Systems Using MR Fluid Dampers in Civil Engineering Applications: a State-of-the Art Review)

  • 정형조;박규식;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.467-474
    • /
    • 2002
  • Semiactive control systems have received considerable attention for protecting structures against natural hazards such as strong earthquakes and high winds, because they not only offer the reliability of passive control systems but also maintain the versatility and adaptability of fully active control systems. Among the many semiactive control devices, magnetorheological (MR) fluid dampers comprise one particularly promising class. In the field of civil engineering, much research and development on MR fluid damper-based control systems has been conducted since B. F. Spencer first introduced this unique semiactive device to civil engineering applications in mid 1990s. In 2001, MR fluid dampers were applied to the full-scale in-service civil engineering structures for the first time. This state-of-the-art paper includes a detailed literature review of control algorithms considering the characteristics of fm fluid dampers. This review provides references to semiactive control systems using MR fluid dampers. The MR fluid damper-based semiactive control systems are shown to have the potential for mitigating the responses of full-scale civil engineering structures under natural hazards.

  • PDF

A Novel Approach for Blind Estimation of Reverberation Time using Gamma Distribution Model

  • Hamza, Amad;Jan, Tariqullah;Jehangir, Asiya;Shah, Waqar;Zafar, Haseeb;Asif, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.529-536
    • /
    • 2016
  • In this paper we proposed an unsupervised algorithm to estimate the reverberation time (RT) directly from the reverberant speech signal. For estimation process we use maximum likelihood estimation (MLE) which is a very well-known and state of the art method for estimation in the field of signal processing. All existing RT estimation methods are based on the decay rate distribution. The decay rate can be obtained either from the energy envelop decay curve analysis of noise source when it is switch off or from decay curve of impulse response of an enclosure. The analysis of a pre-existing method of reverberation time estimation is the foundation of the proposed method. In one of the state of the art method, the reverberation decay is modeled as a Laplacian distribution. In this paper, the proposed method models the reverberation decay as a Gamma distribution along with the unification of an effective technique for spotting free decay in reverberant speech. Maximum likelihood estimation technique is then used to estimate the RT from the free decays. The method was motivated by our observation that the RT of a reverberant signal when falls in specific range, then the decay rate of the signal follows Gamma distribution. Experiments are carried out on different reverberant speech signal to measure the accuracy of the suggested method. The experimental results reveal that the proposed method performs better and the accuracy is high in comparison to the state of the art method.

Development of state-of-the-art detectors for X-ray astronomy

  • Lee, Sang Jun;Adams, J.S.;Audley, H.E.;Bandler, S.R.;Betancourt-Martinez, G.L.;Chervenak, J.A.;Eckart, M.E.;Finkbeiner, F.M.;Kelley, R.L.;Kilbourne, C.A.;Porter, F.S.;Sadleir, J.E.;Smith, S.J.;Wassell, E.J.
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.53.3-54
    • /
    • 2015
  • We are developing large arrays of X-ray microcalorimeters for applications in X-ray astronomy. X-ray microcalorimeters can detect the energy of X-rays with extremely high resolution. High-resolution Imaging spectroscopy enabled by these arrays will allow us to study the hot and energetic nature of the Universe through the detection of X-rays from astronomical objects such as neutron stars or black holes. I will introduce the state-of-the-art X-ray microcalorimeters being developed at NASA/GSFC and the future X-ray observatory missions based on microcalorimeters.

  • PDF

ART2 신경회로망을 이용한 밀링공정의 공구마모 진단 (Tool Wear Monitoring in Milling Operation Using ART2 Neural Network)

  • 윤선일;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.120-129
    • /
    • 1995
  • This study introduces a tool wear monitoring technology in face milling operation comprised of an unsupervised neural network. The monitoring system employs two types of sensor signal such as cutting force and acceleration in sensory detection state. The RMS value and band frequency energy of the sensor signals are calculated for te input patterns of neural network. ART2 neural network, which is capable of self organizing without supervised learning, is used for clustering of tool wear states. The experimental results show that tool wear can be effectively detected under various cutting conditions without prior knowledge of cutting processes.

  • PDF

블록체인 NFT 문화예술콘텐츠의 현황과 과제 (Prospects & Issues of NFT Art Contents in Blockchain Technology)

  • 김종국
    • Journal of Information Technology Applications and Management
    • /
    • 제30권1호
    • /
    • pp.115-126
    • /
    • 2023
  • In various fields such as art, design, music, film, sports, games, and fashion, NFTs (Non-Fungible Tokens) are creating new economic value through trading platforms dedicated to NFT art and content. In this article, I analyze the current state of blockchain technology and NFT art content in the context of an expanding market for blockchain-based NFT art content in the metaverse. I also propose several tasks based on the economic and industrial logic of technological innovation. The first task proposed is to integrate cultural arts on blockchain, metaverse, and NFT platforms through digital innovation, instead of separating or distinguishing between creative production and consumption. Before the COVID-19 pandemic, there was a clear separation between creators and consumers. However, with the rise of Web 3.0 platforms, any user can now create and own their own content. Therefore, it is important to promote a collaborative and integrated approach to cultural arts production and consumption in the blockchain and metaverse ecosystem. The second task proposed is to align the legal framework with blockchain-based technological innovation. The enactment and revision of relevant laws should focus on promoting the development of the NFT trading platform ecosystem, rather than merely regulating it for user protection. As blockchain-based technology continues to evolve, it is important that legal systems adapt to support and promote innovation in the space. This shift in focus can help create a more conducive environment for the growth of blockchain-based NFT platforms. The third task proposed is to integrate education on digital arts, including metaverse and NFT art contents, into the current curriculum. This education should focus on convergence and consilience, rather than merely mixing together humanities, technology, and arts. By integrating digital arts education into the curriculum, students can gain a more comprehensive understanding of the potential of blockchain-based technologies and NFT art. This article examines the digital technological innovation such as blockchain, metaverse, and NFT from an economic and industrial point of view. As a limitation of this research, the critical mind such as philosophical thinking or social criticism on technological innovation is left as a future task.

Real-Time License Plate Detection in High-Resolution Videos Using Fastest Available Cascade Classifier and Core Patterns

  • Han, Byung-Gil;Lee, Jong Taek;Lim, Kil-Taek;Chung, Yunsu
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.251-261
    • /
    • 2015
  • We present a novel method for real-time automatic license plate detection in high-resolution videos. Although there have been extensive studies of license plate detection since the 1970s, the suggested approaches resulting from such studies have difficulties in processing high-resolution imagery in real-time. Herein, we propose a novel cascade structure, the fastest classifier available, by rejecting false positives most efficiently. Furthermore, we train the classifier using the core patterns of various types of license plates, improving both the computation load and the accuracy of license plate detection. To show its superiority, our approach is compared with other state-of-the-art approaches. In addition, we collected 20,000 images including license plates from real traffic scenes for comprehensive experiments. The results show that our proposed approach significantly reduces the computational load in comparison to the other state-of-the-art approaches, with comparable performance accuracy.

The technological state of the art of wave energy converters

  • GURSEL, K. Turgut
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.103-129
    • /
    • 2019
  • While global demand for energy increases annually, at the same time the demand for carbon-free, sulphur-free and NOx-free energy sources grows considerably. This state poses a challenge in the research for newer sources like biomass and shale gas as well as renewable energy resources such as solar, wind, geothermal and hydraulic energy. Although wave energy also is a form of renewable energy it has not fully been exploited technically and economically so far. This study tries to explain those reasons in which it is beyond doubt that the demand for wave energy will soon increase as fossil energy resources are depleted and environmental concerns gain more importance. The electrical energy supplied to the grid shall be produced from wave energy whose conversion devices can basically work according to three different systems. i. Systems that exploit the motions or shape deformations of their mechanisms involved, being driven by the energy of passing waves. ii. Systems that exploit the weight of the seawater stored in a reservoir or the changes of water pressure by the oscillations of wave height, iii. Systems that convert the wave motions into air flow. One of the aims of this study is to present the classification deficits of the wave energy converters (WECs) of the "wave developers" prepared by the European Marine Energy Center, which were to be reclassified. Furthermore, a new classification of all WECs listed by the European Marine Energy Center was arranged independently. The other aim of the study is to assess the technological state of the art of these WECs designed and/or produced, to obtain an overview on them.

Deep Convolution Neural Networks in Computer Vision: a Review

  • Yoo, Hyeon-Joong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권1호
    • /
    • pp.35-43
    • /
    • 2015
  • Over the past couple of years, tremendous progress has been made in applying deep learning (DL) techniques to computer vision. Especially, deep convolutional neural networks (DCNNs) have achieved state-of-the-art performance on standard recognition datasets and tasks such as ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). Among them, GoogLeNet network which is a radically redesigned DCNN based on the Hebbian principle and scale invariance set the new state of the art for classification and detection in the ILSVRC 2014. Since there exist various deep learning techniques, this review paper is focusing on techniques directly related to DCNNs, especially those needed to understand the architecture and techniques employed in GoogLeNet network.