• 제목/요약/키워드: A single resonant inductor

검색결과 46건 처리시간 0.021초

Experimental Waveforms of Single-Pulse Soft-Switching PFC Converter

  • Taniguchi, Katsunori;Koh, Kang-Hoon;Lee, Hyun-woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.1002-1007
    • /
    • 2003
  • A new driving circuit for the SPSS (Single-Pulse Soft-Switching) PFC converter is proposed. The switching device of a SPSS converter switches once In every half cycle of an AC commercial power source. Therefore, it can be solved many problems caused by the high frequency operation. The proposed SPSS converter achieves the soft-switching operation and the EMI noise can be reduced. The resonant capacitor voltage supplies to the resonant inductor even if the input AC voltage is the vicinity of zero cross voltage. Then, the power factor and input current waveform can be improved without delay time. A new driving circuit achieves the operation of SPSS converter by one switching drive circuit. The proposed converter can be satisfied the IEC standard sufficiently.

  • PDF

공진형 보조 회로를 이용한 연속 전류 모드 $S^4$-PFC 컨버터에 관한 연구 (A Study on the Continuous Current Mode $S^4$-PFC Converter using Auxiliary Resonant Circuit)

  • 한대희;김용;배진용;이은영;권순도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.200-203
    • /
    • 2002
  • This paper presents Continuous-current mode of $S^4$-PFC(Single-Stage Single-switch Power Factor Correction) converter. Proposed converter operates in the continueous current mode(CCM) at full load and discontinuous current mode(DCM) at light load. So, characteristic of proposed converter is no bus voltage stress and Zero Voltage Switching(ZVS) using resonant auxiliary circuit. And. This paper presents characteristic of $S^4$-PFC converter and effect of circuit parameter of proposed converter through the input inductor, PFC capacitor's variation. All of these theory and characteristic verified through the experiment with a 72W(12V, 6A), $90^{kHz}$ prototype converter.

  • PDF

압전션트 회로를 이용한 지능패널의 광대역 소음저감에 관한 연구 (Broadband Noise Reduction of Smart Panels using Piezoelectric Shunt Circuits)

  • 정영채;김재환;이중근;하성호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.624-629
    • /
    • 2003
  • In this paper, broadband shunt technique for increasing transmission loss is experimentally investigated. Piezoelectric shunt damping is studied using resonant shunt circuit and negative capacitor shunt circuit. A resonant shunt circuit is implemented by using a resistor and inductor. Negative Capacitor shunt damping is similar in nature to resonant shunt damping techniques, as a single piezoelectric material is used to dampen multi-mode. Performance of both methods is experimentally studied for noise reduction. This is based upon SAE J1400 test method and a transmission loss measurement system is provided for it. This paper will present the test setup fer transmission loss measurement and the tuning procedure of shunt circuits. Finally the results of sound transmission tests will be shown.

  • PDF

UPS용 병렬공진형 직류링크인버터를 위한 제어방식에 관한 연구 (Control Strategy of Resonant DC Link Inverter for UPS)

  • 백주원;유동욱;민병권;류승표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.159-161
    • /
    • 1994
  • A new control technique which generates high-quality sinusoidal output voltage from a single-phase resonant do link inverter suitable for the UPS systems is presented. The inverter output voltage control system has the PID controller with a minor loop of the filter inductor current and tile feedforward controller. The proposed control scheme also solves resonant voltage overshoot without any additional switch or passive component, resulting in pulses with uniform amplitude and high efficiency. Experimental results in the case of linear and nonlinear loads are presented to confirm the usefulness of the Proposed control algorithms.

  • PDF

유도가열 조리기기용 인버터 파라미터 최적화에 관한 연구 (A Study on the Parameter Optimization of Inverter for Induction Heating Cooking Appliance)

  • 강병관;이세민;박정욱
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.77-85
    • /
    • 2009
  • With the advent of power semiconductor switching devices, power electronics relating to high frequency electromagnetic eddy current based induction heating technology have become more suitable and acceptable. This paper presents high-frequency induction heating cooking appliance circuit based on the zero current switching-PWM single ended push-pull(ZCS-PWM SEPP) resonant inverter added AC-DC converter. This inverter uses pulse-width-modulation(PWM) control method with active auxiliary quasi-resonant lossless inductor snubbers and a switched capacitor. To improved the transient performance, the PI controller is applied for this system. For the systematic parameter optimization of the PI controller, the gradient-based optimization algorithm is applied. The performance of optimized parameters is evaluated using simulation and experimental test. These results show that the proposed systematic optimal tuning method improve the transient performances of this system.

Hardware-Based Implementation of a PIDR Controller for Single-Phase Power Factor Correction

  • Le, Dinh Vuong;Park, Sang-Min;Yu, In-Keun;Park, Minwon
    • 한국산업정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.21-30
    • /
    • 2016
  • In a single-phase power factor correction (PFC), the standard cascaded control algorithm using a proportional-integral-derivative (PID) controller has two main drawbacks: an inability to track sinusoidal current reference and low harmonic compensation capability. These drawbacks cause poor power factor and high harmonics in grid current. To improve these drawbacks, this paper uses a proportional-integral-derivative-resonant (PIDR) controller which combines a type-III PID with proportional-resonant (PR) controllers in the PFC. Based on a small signal model of the PFC, the type-III PID controller was implemented taking into account the bandwidth and phase margin of the PFC system. To adopt the PR controllers, the spectrum of inductor current of the PFC was analyzed in frequency domain. The hybrid PIDR controller were simulated using PSCAD/EMTDC and implemented on a 3 kW PFC prototype hardware. The performance results of the hybrid PIDR controller were compared with those of an individual type-III PID controller. Both controllers were implemented successfully in the single-phase PFC. The total harmonic distortion of the proposed controller were much better than those of the individual type-III PID controller.

압전분기회로를 이용한 보 구조물의 진동제어 파라미터 최적화 해석 (Parameter Optimization for Vibration Control of a Cantilever Beam Using Piezoelectric Shunt Damping System)

  • 임경채;조동수;박우철;기창두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.918-921
    • /
    • 2005
  • According to the mechanical-electrical coupling characteristics and the electrical Impedance property of resistor-inductor-capacitor(RLC) series resonant circuit, the mechanical impedance analysis of a bimorph piezoceramic patch shunted with a series RLC resonant circuit is conducted. The displacement transfer function of a cantilever beam bonded with a piezoelectric shunt damping module is deduced in the case of single mode vibration of the beam. By the use of vibration damping theory of tuned mass damper system, the parameter optimization of piezoelectric shunt damping system is performed. The optimal resonant state of the shunting circuit can be obtained when the resister and conductor are optimally adjusted. Test results show that the vibration control effect as well improved with optimized piezoelectric shunt system.

  • PDF

Thickness-Vibration-Mode Piezoelectric Transformer for Power Converter

  • Su-Ho lee;Yoo, Ju-Hyun;Yoon, H.S.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권3호
    • /
    • pp.1-5
    • /
    • 2000
  • This paper presents a new sort of multilayer piezoelectric ceramic transformer for switching regulation power supplies. This piezoelectric transformer operate in the second thickness resonant vibration mode. Accordingly its resonant frequency is higher than 1 NHz, Because output power is low if input and output part of transformer are consisted of single layer, this research suggests a new method, which is consisted of both input and output part of transformer have 2-layered piezoelectric ceramics, The size of transformer is 20 mm in width and length, and 1.4 mm in thickness, respectively, To design a high efficient switching circuit of the transformer, internal circuit parameters were measured and then weve calculated a parameter of inductor nd capacitor to design a driving circuit, Weve used a MISFET and its driver circuit modified a calp oscillator circuit as the primary switching circuit.

  • PDF

Novel Single-inductor Multistring-independent Dimming LED Driver with Switched-capacitor Control Technique

  • Liang, Guozhuang;Tian, Hanlei
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2019
  • Current imbalance is the main factor affecting the lifespan of light-emitting diode (LED) lighting systems and is generally solved by active or passive approaches. Given many new lighting applications, independent control is particularly important in achieving different levels of luminance. Existing passive and active approaches have their own limitations in current sharing and independent control, which bring new challenges to the design of LED drivers. In this work, a multichannel resonant converter based on switched-capacitor control (SCC) is proposed for solving this challenge. In the resonant network of the upper and lower half-bridges, SCC is used instead of fixed capacitance. Then, the individual current of the LED array is obtained through regulation of the effective capacitance of the SCC under a fixed switching frequency. In this manner, the complexity of the control unit of the circuit and the precision of the multichannel outputs are further improved. Finally, the superior performance of the proposed LED driver is verified by simulations and a 4-channel experimental prototype with a rated output power of 20 W.

Single-Phase Improved Auxiliary Resonant Snubber Inverter that Reduces the Auxiliary Current and THD

  • Zhang, Hailin;Kou, Baoquan;Zhang, He;Zhang, Lu
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.1991-2004
    • /
    • 2016
  • An LC filter is required to reduce the output current ripple in the auxiliary resonant snubber inverter (ARSI) for high-performance applications. However, if the traditional control method is used in the ARSI with LC filter, then unnecessary current flows in the auxiliary circuit. In addressing this problem, a novel load-adaptive control that fully uses the filter inductor current ripple to realize the soft-switching of the main switches is proposed. Compared with the traditional control implemented in the ARSI with LC filter, the proposed control can reduce the required auxiliary current, contributing to higher efficiency and DC-link voltage utilization. In this study, the detailed circuit operation in the light load mode (LLM) and the heavy load mode (HLM) considering the inductor current ripple is described. The characteristics of the improved ARSI are expressed mathematically. A prototype with 200 kHz switching frequency, 80 V DC voltage, and 8 A maximum output current was developed to verify the effectiveness of the improved ARSI. The proposed ARSI was found to successfully operate in the LLM and HLM, achieving zero-voltage switching (ZVS) of the main switches and zero-current switching (ZCS) of the auxiliary switches from zero load to full load. The DC-link voltage utilization of the proposed control is 0.758, which is 0.022 higher than that of the traditional control. The peak efficiency is 91.75% at 8 A output current for the proposed control, higher than 89.73% for the traditional control. Meanwhile, the carrier harmonics is reduced from -44 dB to -66 dB through the addition of the LC filter.