• 제목/요약/키워드: A mobile control

검색결과 3,560건 처리시간 0.03초

두 팔이 달린 이동 로봇의 위치기반 힘 제어응용 (Position-Based Force Control Application of a Mobile Robot with Two Arms)

  • 안재국;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.315-321
    • /
    • 2013
  • This paper presents the position-based force control application of a mobile manipulator. The mobile manipulator consists of two six DOF manipulators and a mobile robot. Kinematics of the robot is analyzed and simulated to validate the analysis. A position-based force control technique is applied to the robot by adding an outer loop to interact with the environment. Experimental studies of force control applications of robot arm and interaction with a human operator are conducted. Experimental results show that the robot arm is well regulated to follow the desired force.

모바일 컴퓨팅 데이터베이스 환경에서의 낙관적 제어기법을 이용한 동시성제어기법 (A Concurrency Control Method using Optimistic Control in Mobile Computing DB Environment)

  • 조성제
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.131-143
    • /
    • 2006
  • 무선통신 기술의 급속한 발전으로 무선 인터넷 서비스가 점차 확대되고 있고 그 중 모바일 실시간 처리가 큰 비중을 차지하고 있다. 모바일 트랜잭션 처리는 낮은 대역폭과 핸드오버, 응답시간 지연 등으로 그것의 활성화를 저해하는 여러 가지 문제점을 지니고 있음에도 불구하고 모바일 컴퓨팅 분야에 다양하게 응용되고 있다. 그래서 모바일 컴퓨팅 환경에서 제한된 대역폭을 효율적으로 사용하고, 병목현상을 개선한 새로운 동시성 제어 기법이 요구된다. 본 논문에서는 모바일 컴퓨팅 환경에서의 동시성 제어 문제를 효과적으로 해결하고 동시에 여러 트랜잭션을 처리하여 병렬성을 증진시키는 낙관적 동시성 기법을 제안하였다. 기존기법과 달리, 제안하는 기법은 같은 세그먼트 내에 다른 데이터를 접근하는 트랜잭션에게 세그먼트를 허용함으로써 불필요한 대기시간을 최소화 할 수 있도록 하여 시스템 처리율을 향상시켰다. 그리고 제안된 동시성 제어 기법의 알고리즘을 제안하였다.

  • PDF

바퀴/4 족 동작 전환으로 계단 및 문턱 오르기가 가능한 서비스 하이브리드 이동 로봇 개발 (Development of a Service Hybrid Mobile Robot for Climbing Stairs and Thresholds by Switching Wheel and Leg Gait)

  • 김진백;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1082-1091
    • /
    • 2007
  • In this paper, we developed a new hybrid mobile robot which can climb stairs and go over thresholds by crawl gait with embedded real-time control software. This robot is also categorized into hybrid robot that has advantages of wheeled mobile robot and legged mobile robot, but adopts gait feature of crocodile named belly crawl. We imitated the belly crawl using four legs of 2 DOF, four omni-directional wheels, and embedded control software which controls legs and wheels. This software is developed using RTAI/Linux, real-time drivers. As a result, the new hybrid mobile robot has crawl gait. Using this feature, the new hybrid mobile robot can climb stairs and go over thresholds just by path planning of each leg with size of stairs and thresholds, and computing the movement distance of robot body center without considering stability. The performance of our new hybrid mobile robot is verified via experiments.

적응퍼지논리를 이용한 Mobile Vehicle의 횡방향 제어기 구현 (The implementation of a Lateral Controller for the Mobile Vehicle using Adaptive Fuzzy Logics)

  • 김명중;이창구;김성중
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권5호
    • /
    • pp.249-256
    • /
    • 2000
  • This paper deals with the control of the lateral motion of a mobile vehicle. A mobile vehicle using in this experiment is able to adapt many unmanned automatic driving system, for example, like a automated product transporting system. This vehicle is consist of the two servomotors. One is used to accelerate this vehicle and the another is used to change this lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral motion of the vehicle. Therefore, the main aim of this paper is investigate the possibility of applying adaptive fuzzy control algorithms to a microprocessor-based servomotor controller which requires faster and more accurate response compared with many other industrial processes. Fuzzy control rules are derived by modelling an expert's driving actions. Experiments are performed using a mobile vehicle with sensing units, a microprocessor and a host computer.

  • PDF

Robust Nonlinear Control of a Mobile Robot

  • Zidani, Ghania;Drid, Said;Chrifi-Alaoui, Larbi;Arar, Djemai;Bussy, Pascal
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.1012-1019
    • /
    • 2016
  • A robust control intended for a nonholonomic mobile robot is considered to guarantee good tracking a desired trajectory. The main drawbacks of the mobile robot model are the existence of nonholonomic constraints, uncertain system parameters and un-modeled dynamics. in order to overcome these drawbacks, we propose a robust control based on Lyapunov theory associated with sliding-mode control, this solution shows good robustness with respect to parameter variations, measurement errors, noise and guarantees position and velocity tracking. The global asymptotic stability of the overall system is proven theoretically. The simulation results largely confirm the effectiveness of the proposed control.

문자기반 모바일 네트워크를 이용한 임베디드 전광판의 원격제어 시스템의 구현 (Implementation of the Embedded System Screen Control using Text-Based Mobile Network)

  • 이연석;윤영준
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.72-77
    • /
    • 2006
  • In this paper, a remote screen control by mobile networks on embedded system is implemented. For this system a server program is ported on the embedded system connected with internet. And on the side of a mobile phone, a client program is ported using GVM. The embedded system can display the text from the mobile phone on its LCD. In the implemented embedded system, the text data from GVM emulator is sent to the system for display on its LCD. The realization of the proposed embedded system can display the text from a working mobile phone.

차량형 로봇을 이용한 다중 Off-Hooked 트레일러의 후진 제어 (Backward-Motion Control of Multiple Off-Hooked Trailers Using a Car-Like Mobile Robot)

  • 정우진;유광현
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.273-280
    • /
    • 2009
  • It is difficult to find a practical solution for the backward-motion control of a car-like mobile robot with n passive trailers. Unlike an omni-directional robot, a car-like mobile robot has nonholonomic constraints and limitations of the steering angle. For these reasons, the backward motion control problem of a car-like mobile robot with $n$ passive trailers is not trivial. In spite of difficulties, backing up a trailer system is useful for parking control. In this study, we proposed a mechanical alteration which is connecting $n$ passive trailers to the front bumper of a car to improve the backward motion control performance. Theoretical verification and simulations show that the backward-motion control of a general car with n passive trailers can be successfully carried out by using the proposed approach.

  • PDF

혼합 비주얼 서보 제어 기법을 이용한 이동로봇의 목표물 추종 (Target Tracking of the Wheeled Mobile Robot using the Combined Visual Servo Control Method)

  • 이호원;권지욱;홍석교;좌동경
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1245-1254
    • /
    • 2011
  • This paper proposes a target tracking algorithm for wheeled mobile robots using in various fields. For the stable tracking, we apply a vision system to a mobile robot which can extract targets through image processing algorithms. Furthermore, this paper presents an algorithm to position the mobile robot at the desired location from the target by estimating its relative position and attitude. We show the problem in the tracking method using the Position-Based Visual Servo(PBVS) control, and propose a tracking method, which can achieve the stable tracking performance by combining the PBVS control with Image-Based Visual Servo(IBVS) control. When the target is located around the outskirt of the camera image, the target can disappear from the field of view. Thus the proposed algorithm combines the control inputs with of the hyperbolic form the switching function to solve this problem. Through both simulations and experiments for the mobile robot we have confirmed that the proposed visual servo control method is able to enhance the stability compared to of the method using only either PBVS or IBVS control method.

Modeling and Motion Control of Mobile Robot for Lattice Type Welding

  • Jeon, Yang-Bae;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.83-93
    • /
    • 2002
  • This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90$^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.

실내 환경에서의 이동로봇 제어를 위한 유비쿼터스 인터페이스 시스템 (A Ubiquitous Interface System for Mobile Robot Control in Indoor Environment)

  • 안현식;송재성
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.66-71
    • /
    • 2006
  • Recently, there are lots of concerning on ubiquitous environment of robots and URC (Ubiquitous Robotic Companion). In this paper, a practical ubiquitous interface system far controlling mobile robots in indoor environments was proposed. The interface system was designed as a manager-agent model including a PC manager, a mobile manager, and robot agents for being able to be accessed by any network. In the system, the PC manager has a 3D virtual environment and shows real images for a human-friendly interface, and share the computation load of the robot such as path planning and managing geographical information. It also contains Hybrid Format Manager(HFM) working for transforming the image, position, and control data and interchanging them between the robots and the managers. Mobile manager working in the minimized computing condition of handsets has a mobile interface environment displaying the real images and the position of the robot and being able to control the robots by pressing keys. Experimental results showed the proposed system was able to control robots rising wired and wireless LAN and mobile Internet.