• Title/Summary/Keyword: A level-set method

Search Result 1,382, Processing Time 0.032 seconds

A Simple Method for Solving Type-2 and Type-4 Fuzzy Transportation Problems

  • Senthil Kumar, P.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.225-237
    • /
    • 2016
  • In conventional transportation problem (TP), all the parameters are always certain. But, many of the real life situations in industry or organization, the parameters (supply, demand and cost) of the TP are not precise which are imprecise in nature in different factors like the market condition, variations in rates of diesel, traffic jams, weather in hilly areas, capacity of men and machine, long power cut, labourer's over time work, unexpected failures in machine, seasonal changes and many more. To counter these problems, depending on the nature of the parameters, the TP is classified into two categories namely type-2 and type-4 fuzzy transportation problems (FTPs) under uncertain environment and formulates the problem and utilizes the trapezoidal fuzzy number (TrFN) to solve the TP. The existing ranking procedure of Liou and Wang (1992) is used to transform the type-2 and type-4 FTPs into a crisp one so that the conventional method may be applied to solve the TP. Moreover, the solution procedure differs from TP to type-2 and type-4 FTPs in allocation step only. Therefore a simple and efficient method denoted by PSK (P. Senthil Kumar) method is proposed to obtain an optimal solution in terms of TrFNs. From this fuzzy solution, the decision maker (DM) can decide the level of acceptance for the transportation cost or profit. Thus, the major applications of fuzzy set theory are widely used in areas such as inventory control, communication network, aggregate planning, employment scheduling, and personnel assignment and so on.

A Study on the State-of-the-Art Technology Level Evaluation and Internation R&D Cooperation in the Field of Mechanical Engineering by Delphi Method (Delphi기법에 의한 기계공학기술의 수준평가 및 국제 기술협력기반에 관한 연구)

  • Y.J. Kwon;S.H. Joo;Kim, H.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.45-58
    • /
    • 1996
  • We provide a set of information on technologies in the area of mechanical engineering to draw meaningful action plans for the internationalization of National R&D activities. In this study, we employed a modified Delphi method to evaluate levels of our technoligical capabilities and developed countries' as well. We investigate technology acquistion methodologies, technology charcteristics and various aspects of interna- tional cooperation in terms of technology. Then, we analyzed final responses of participants(i.e., the third round results of Delphi method) to see the correlation among various factors in developing mechanical engineeing technologies through international cooperation. The technology classification used in this research was devel- oped by STEPI(Science and Technology Policy Institute). In conclusion, our mechanical engineering technology is investigated to be below the middle level stage of technology(i.e., the stage of digesting acquired technologies) except the shipbuilding equipments technology which is evaluated to be on the top level stage of technology.

  • PDF

A Study on Automatic Tooth Root Segmentation For Dental CT Images (자동 치아뿌리 영역 검출 알고리즘에 관한 연구)

  • Shin, Seunghwan;Kim, Yoonho
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.4
    • /
    • pp.45-60
    • /
    • 2014
  • Dentist can obtain 3D anatomical information without distortion and information loss by using dental Computed Tomography scan images on line, and also can make the preoperative plan of implant placement or orthodontics. It is essential to segment individual tooth for making an accurate diagnosis. However, it is very difficult to distinguish the difference in the brightness between the dental and adjacent area. Especially, the root of a tooth is very elusive to automatically identify in dental CT images because jawbone normally adjoins the tooth. In the paper, we propose a method of automatically tooth region segmentation, which can identify the root of a tooth clearly. This algorithm separate the tooth from dental CT scan images by using Seeded Region Growing method on dental crown and by using Level-set method on dental root respectively. By using the proposed method, the results can be acquired average 19.2% better accuracy, compared to the result of the previous methods.

A Study on the Optimum Design of Warm-up rate in a Air-Heated Heater System by Using CFD Analysis and Taguchi Method (전산유체해석과 다구찌 방법을 연계한 공기 가열식 히터 시스템의 난방속효성 최적화에 관한 연구)

  • Kim, Min-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.72-82
    • /
    • 2005
  • The objective of this paper is to describe the optimization of design parameters in a large-sized commercial bus heater system by using CFD(computational fluid dynamics) analysis and Taguchi method. In order to obtain the best combination of each control factor which results in a desired performance of heater system, the parameter design of the Taguchi method is adopted for the robust design considering the dynamic characteristic. The research activity may be divided into four phases. The first one is analyzing the problem, i.e., ascertaining the influential factors. In the second phase the levels were set in such a way that their variation would significantly influence the response. In the third phase the experimental runs were designed. In the final phase the planned runs were carried out numerically to evaluate the optimal combination of factors which is able to provide the best response. In this study, eight factors were considered for the analysis: one with two level and seven with three level combinations comprising the $L_{18}(2^1{\times}3^7)$ orthogonal array. The results of this study can be summarized as follows ; (i)The optimum condition of control factor is a set of <$A_2\;B_1\;C_3\;D_3\;E_1\;F_2\;G_3\;H_2$> where A is shape of the outer fin, B is pitch of the outer fin, C is height of the outer fin, D is the inner fin number, E is the inner fin height, F is length of the flame guide, G is diameter of the heating element and H is clearance between air guide and heating element. (ii)The heat capacity of heated discharge air under the optimum condition satisfies the equation y=0.6M w here M is a signal factor. (iii)The warm-up rate improves about three times, more largely as com pared with the current condition, which results in about 9.2minutes reduction.

An Application of the Smart Beta Portfolio Model: An Empirical Study in Indonesia Stock Exchange

  • WASPADA, Ika Putera;SALIM, Dwi Fitrizal;FARISKA, Putri
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.9
    • /
    • pp.45-52
    • /
    • 2021
  • Stock price fluctuations affect investor returns, particularly, in this pandemic situation that has triggered stock market shocks. As a result of this situation, investors prefer to move their money into a safer portfolio. Therefore, in this study, we approach an efficient portfolio model using smart beta and combining others to obtain a fast method to predict investment stock returns. Smart beta is a method to selects stocks that will enter a portfolio quickly and concisely by considering the level of return and risk that has been set according to the ability of investors. A smart beta portfolio is efficient because it tracks with an underlying index and is optimized using the same techniques that active portfolio managers utilize. Using the logistic regression method and the data of 100 low volatility stocks listed on the Indonesia stock exchange from 2009-2019, an efficient portfolio model was made. It can be concluded that an efficient portfolio is formed by a group of stocks that are aggressive and actively traded to produce optimal returns at a certain level of risk in the long-term period. And also, the portfolio selection model generated using the smart beta, beta, alpha, and stock variants is a simple and fast model in predicting the rate of return with an adjusted risk level so that investors can anticipate risks and minimize errors in stock selection.

A Study of Safety Accident Prediction Model (Focusing on Military Traffic Accident Cases) (안전사고 예측모형 개발 방안에 관한 연구(군 교통사고 사례를 중심으로))

  • Ki, Jae-Sug;Hong, Myeong-Gi
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.427-441
    • /
    • 2021
  • Purpose: This study proposes a method for developing a model that predicts the probability of traffic accidents in advance to prevent the most frequent traffic accidents in the military. Method: For this purpose, CRISP-DM (Cross Industry Standard Process for Data Mining) was applied in this study. The CRISP-DM process consists of 6 stages, and each stage is not unidirectional like the Waterfall Model, but improves the level of completeness through feedback between stages. Results: As a result of modeling the same data set as the previously constructed accident investigation data for the entire group, when the classification criterion was 0.5, Significant results were derived from the accuracy, specificity, sensitivity, and AUC of the model for predicting traffic accidents. Conclusion: In the process of designing the prediction model, it was confirmed that it was difficult to obtain a meaningful prediction value due to the lack of data. The methodology for designing a predictive model using the data set was proposed by reorganizing and expanding a data set capable of rational inference to solve the data shortage.

A Fractal Based Approach for Multi Level Abstraction of Three Dimensional Terrain (프랙탈 기법을 이용한 3차원 지형의 다중 추상화)

  • Park, Mee-Jeong;Lee, Jeong-Jae
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.1 s.26
    • /
    • pp.9-15
    • /
    • 2005
  • Preservation of geometrical context of terrains in a digitized format is useful in handling and making modification to the data. Digitization of three-dimensional terrain still proves a great challenge due to heavy load of context required to retain details of topological and geometrical information. Methods of simplification, restoration and multi-level terrain generation are often employed to transform the original data into a compressed digital format. However, reduction of the stored data size comes at an expense of loss of details in the original data set. This article reports on an alternative scheme for simplification and restoration of terrain data. The algorithm utilizes the fact that the terrain formation and patterns can be predicted and modeled through the fractal algorithm. This method was used to generate multi-level terrain model based on NGIS digital maps with preserving geometrical context of terrains.

Context-sensitive Word Error Detection and Correction for Automatic Scoring System of English Writing (영작문 자동 채점 시스템을 위한 문맥 고려 단어 오류 검사기)

  • Choi, Yong Seok;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.1
    • /
    • pp.45-56
    • /
    • 2015
  • In this paper, we present a method that can detect context-sensitive word errors and generate correction candidates. Spelling error detection is one of the most widespread research topics, however, the approach proposed in this paper is adjusted for an automated English scoring system. A common strategy in context-sensitive word error detection is using a pre-defined confusion set to generate correction candidates. We automatically generate a confusion set in order to consider the characteristics of sentences written by second-language learners. We define a word error that cannot be detected by a conventional grammar checker because of part-of-speech ambiguity, and propose how to detect the error and generate correction candidates for this kind of error. An experiment is performed on the English writings composed by junior-high school students whose mother tongue is Korean. The f1 value of the proposed method is 70.48%, which shows that our method is promising comparing to the current-state-of-the art.

Numerical Method Aimed at Multi-material Simulation of the Energetic Device (에너지 물질이 포함된 장치의 폭발 해석을 위한 다중물질 해석 방법)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.274-278
    • /
    • 2011
  • We present an innovative method of multi-physics application involving energetic materials. We use an Eulerian methodology to address these problems. We have devised a new level set based tracking framework that can elegantly handle large gradients typically found in energetic response of high explosive and metals. Proper constitutive relations are employed to model the transient phases of gas, lliquid, and solid in the high strain rate regime. We use the confined and unconfined rate stick results to validate against the experimental data.

  • PDF

Improved Shape Extraction Using Inward and Outward Curve Evolution (양방향 곡선 전개를 이용한 개선된 형태 추출)

  • Kim Ha-Hyoung;Kim Seong-Kon;Kim Doo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.23-31
    • /
    • 2000
  • Iterative curve evolution techniques are powerful methods for image segmentation. Classical methods proposed curve evolutions which guarantee close contours at convergence and, combined with the level set method, they easily handled curve topology changes. In this paper, we present a new geometric active contour model based on level set methods introduced by Osher & Sethian for detection of object boundaries or shape and we adopt anisotropic diffusion filtering method for removing noise from original image. Classical methods allow only one-way curve evolutions : shrinking or expanding of the curve. Thus, the initial curve must encircle all the objects to be segmented or several curves must be used, each one totally inside one object. But our method allows a two-way curve evolution : parts of the curve evolve in the outward direction while others evolve in the inward direction. It offers much more freedom in the initial curve position than with a classical geodesic search method. Our algorithm performs accurate and precise segmentations from noisy images with complex objects(jncluding sharp angles, deep concavities or holes), Besides it easily handled curve topology changes. In order to minimize the processing time, we use the narrow band method which allows us to perform calculations in the neighborhood of the contour and not in the whole image.

  • PDF