• Title/Summary/Keyword: A key technique

Search Result 1,732, Processing Time 0.031 seconds

Hydraulic fracturing experiments of highly deviated well with oriented perforation technique

  • Zhu, Hai Y.;Deng, Jin G.;Liu, Shu J.;Wen, Min;Peng, Cheng Y.;Li, Ji R.;Chen, Zi J.;Hu, Lian B.;Lin, Hai;Guang, Dong
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.153-172
    • /
    • 2014
  • In order to investigate the effect of different perforation angles (the angle between the perforation direction and the maximum horizontal principal stress) on the fracture initiation and propagation during hydraulic fracturing of highly deviated well in oil & gas saturated formation, laboratory experiments of the hydraulic fracturing had been carried out on the basis of non-dimensional similar criteria by using 400^3 $mm^3$ cement cubes. A plane fracture can be produced when the perforations are placed in the direction of the maximum horizontal principal stress. When the perforation angle is $45^{\circ}$, the fractures firstly initiate from the perforations at the upper side of the wellbore, and then turn to the maximum horizontal principal stress direction. When the well deviation angle and perforation angle are both between $45^{\circ}$ and $90^{\circ}$, the fractures hardly initiate from the perforations at the lower side of the wellbore. Well azimuth (the angle between the wellbore axis and the maximum horizontal principal stress) has a little influence on the fracture geometries; however it mainly increases the fracture roughness, fracture continuity and the number of secondary fractures, and also increases the fracture initiation and propagation pressure. Oriented perforating technology should be applied in highly deviated well to obtain a single plane fracture. If the well deviation angle is smaller, the fractures may link up.

Efficient Proof of Vote Validity Without Honest-Verifier Assumption in Homomorphic E-Voting

  • Peng, Kun
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.549-560
    • /
    • 2011
  • Vote validity proof and verification is an efficiency bottleneck and privacy drawback in homomorphic e-voting. The existing vote validity proof technique is inefficient and only achieves honest-verifier zero knowledge. In this paper, an efficient proof and verification technique is proposed to guarantee vote validity in homomorphic e-voting. The new proof technique is mainly based on hash function operations that only need a very small number of costly public key cryptographic operations. It can handle untrusted verifiers and achieve stronger zero knowledge privacy. As a result, the efficiency and privacy of homomorphic e-voting applications will be significantly improved.

3D Avatar´s movement creation and control technique

  • Jang, Moon-Sung;Kuc, Tae-Yong;Kim, Si-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.117.4-117
    • /
    • 2001
  • This paper introduces the movement creation and control technique of an avatar, whose replacement of the user is increasing due to the rapid development of the internet and hardware that generalizes the VR. A 3D avatar´s movement is usually created through the key-framing technique or motion-capture equipment. This paper introduce the production of the avatar´s movement by constructing a articulated avatar whose speed and movement are automatically created by the neural oscillatory network and avatar´s joint is controlled by the use of kinematics and motion editor.

  • PDF

Power output and efficiency of a negative capacitance and inductance shunt for structural vibration control under broadband excitation

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chang, Lulu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.223-246
    • /
    • 2015
  • Structural vibration control using a piezoelectric shunt is an established control technique. This technique involves connecting a piezoelectric patch, which is bonded onto or embedded into the vibrating structure, to an electric shunt circuit. Thus, vibration energy is converted into electrical energy and is dissipated through a network of electrical components. Different configurations of shunt have been researched, among which the negative capacitance-inductance shunt has gained prominence recently. It is basically an analog, active circuit consisting of operational amplifiers and passive elements to introduce real and imaginary impedance on the vibrating structure. The present study attempts to model the behavior of a negative capacitance-inductance shunt in terms of power output and efficiency using circuit modeling software. The shunt model is validated experimentally and is used to control the structural vibration of an aluminum beam, connected to a pair of piezoelectric patches, under broadband excitation. The model is also used to determine the optimal parameters of a negative capacitance-inductance shunt to increase the efficiency and predict the voltage output limit of op-amp against the supply voltage.

Derivation of Key Evaluation Indicators for Improving the Quality of Daycare Centers: Using the DEMATEL Technique (어린이집 품질 제고를 위한 핵심 평가지표 도출: DEMATEL 기법을 이용하여)

  • Park, Youngsun
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.767-781
    • /
    • 2019
  • Purpose: The purpose of this study is to derive key evaluation indicators to improve the quality of daycare centers by identifying the relationships among the 18 evaluation indicators of the daycare evaluation system using the DEMATEL technique. Methods: In this study, the questionnaires are completed by 17 daycare center directors who have received accreditation of daycare center. They are requested to consider the level of direct influence between two evaluation indicators. A DEMATEL analysis was conducted based on the survey results. Results: The result of the study shows that the most important indicators of daycare center quality are directors leadership, institutional operations and professionalism of staff. Among evaluation areas, educational childcare curriculum & interactions is affected by all areas, and staff area affect all areas. Conclusion: The evaluation areas and indicators of the daycare center are judged to be well-balanced. It is expected that the findings of the key evaluation indicators that should be prioritized among the evaluation indicators will be helpful to those preparing for the evaluation of the daycare center.

Study on Influences and Elimination of Test Temperature on PDC Characteristic Spectroscopy of Oil-Paper Insulation System

  • Liu, Xiao;Liao, Ruijin;Lv, Yandong;Liu, Jiefeng;Gao, Jun;Hao, Jian
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1107-1113
    • /
    • 2015
  • Test temperature is an important factor affecting the measurement results of dielectric response of field power transformers. In order to better apply the polarization and depolarization current (PDC) to the condition monitoring of oil-paper insulation system in power transformers, the influences and elimination method of test temperature on PDC characteristic spectroscopy (PDC-CS) were investigated. Firstly, the experimental winding sample was measured by PDC method at different test temperatures, then the PDC-CS was obtained from the measurement results and its changing rules were discussed, which show that the PDC-CS appears a horizontal mobility with the rise of temperature. Based on the rules, the “time temperature shift technique” was introduced to eliminate the influence of test temperature. It is shown that the PDC-CS at different test temperatures can be converted to the same reference temperature coincident with each other.

Lattice-based strongly-unforgeable forward-secure identity-based signature scheme with flexible key update

  • Zhang, Xiangsong;Liu, Zhenhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2792-2810
    • /
    • 2017
  • Forward-secure signature is a specific type of signature, which can mitigate the damage caused by the signing key exposure. Most of the existing forward-secure (identity-based) signature schemes can update users' secret keys at each time period, achieve the existential unforgeability, and resist against classical computer attacks. In this paper, we first revisit the framework of forward-secure identity-based signatures, and aim at supporting flexible key update at multi time period. Then we propose a post-quantum forward-secure identity-based signature scheme from lattices and use the basis delegation technique to provide flexible key update. Finally, we prove that the proposed scheme is strongly unforgeable under the short integer solution (SIS) hardness assumption in the random oracle model.

Experimental Study on Internal Flow of a Mini Centrifugal Pump by PIV Measurement

  • Wu, Yulin;Yuan, Huijing;Shao, Jie;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.121-126
    • /
    • 2009
  • The internal flow field in a centrifugal pump working at the several flow conditions has been measured by using the particle image velocimetry (PIV) technique with the laser induced fluorescence (LIF) particles and the refractive index matched (RIM) facilities. The impeller of the centrifugal pump has an outlet diameter in 100mm, and consists of six two-dimensional curvature backward swept blades of constant thickness. Measured results give reliable flow patterns in the pump. It is obvious that application of LIF particle and RIM are the key methods to obtain the right PIV measured results in pump internal flow.

Design and Evaluation of a High-performance Key-value Storage for Industrial IoT Environments (산업용 IoT 환경을 위한 고성능 키-값 저장소의 설계 및 평가)

  • Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.127-133
    • /
    • 2021
  • In industrial IoT environments, sensors generate data for their detection targets and deliver the data to IoT gateways. Therefore, managing large amounts of real-time sensor data is an essential feature for IoT gateways, and key-value storage engines are widely used to manage these sensor data. However, key-value storage engines used in IoT gateways do not take into account the characteristics of sensor data generated in industrial IoT environments, and this limits the performance of key-value storage engines. In this paper, we optimize the key-value storage engine by utilizing the features of sensor data in industrial IoT environments. The proposed optimization technique is to analyze the key, which is the input of a key-value storage engine, for further indexing. This reduces excessive write amplification and improves performance. We implement our optimization scheme in LevelDB and use the workload of the TPCx-IoT benchmark to evaluate our proposed scheme. From experimental results we show that our proposed technique achieves up to 21 times better than the existing scheme, and this shows that the proposed technique can perform high-speed data ingestion in industrial IoT environments.

A Design of AES-based Key Wrap/Unwrap Core for WiBro Security (와이브로 보안용 AES기반의 Key Wrap/Unwrap 코어 설계)

  • Kim, Jong-Hwan;Jeon, Heung-Woo;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1332-1340
    • /
    • 2007
  • This paper describes an efficient hardware design of key wrap/unwrap algorithm for security layer of WiBro system. The key wrap/unwrap core (WB_KeyWuW) is based on AES (Advanced Encryption Standard) algorithm, and performs encryption/decryption of 128bit TEK (Traffic Encryption Key) with 128bit KEK (Key Encryption Key). In order to achieve m area-efficient implementation, two design techniques are considered; First, round transformation block within AES core is designed using a shared structure for encryption/decryption. Secondly, SubByte/InvSubByte blocks that require the largest hardware in AES core are implemented by using field transformation technique. As a result, the gate count of the WB_KeyWuW core is reduced by about 25% compared with conventional LUT (Lookup Table)-based design. The WB_KeyWuW con designed in Verilog-HDL has about 14,300 gates, and the estimated throughput is about $16{\sim}22-Mbps$ at 100-MHz@3.3V, thus the designed core can be used as an IP for the hardware design of WiBro security system.