• Title/Summary/Keyword: A heavy rainfall

Search Result 745, Processing Time 0.032 seconds

Hydraulic and hydrologic performance evaluation of low impact development technology

  • Yano, Kimberly Ann;Geronimo, Franz Kevin;Reyes, Nash Jett;Choe, Hye-Seon;Jeon, Min-Su;Kim, Lee-Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.325-325
    • /
    • 2020
  • Low impact development (LID) is a widely used technology that aims to reduce the peak flow volume and amount of pollutants in stormwater runoff while introducing physicochemical, biological or a combination of both mechanisms in order to improve water quality. This research aimed to determine the effect of hydrologic factors in removing the pollutants on stormwater runoff by an LID facility. Monitored storm events from 2010-2018 were analysed to evaluate the hydraulic and hydrological performance of a small constructed wetland (SCW). Standard methods for the examination water and wastewater were employed to assess the water quality of the collected samples (APHA et al, 1992). Primary hydrologic data were obtained from the Korea Meteorological Administration. The recorded average rainfall intensity and antecedent dry days (ADD) of SCW were 5.26 mm/hr and 7 days respectively. During the highest rainfall event (27 mm/hr), the removal efficiency of SCW for all the pollutants was ranging from 67% to 91%. While on the lowest rainfall event (0.7 mm/hr), the removal efficiency was ranging from -36% to 62%. Rainfall intensity has a significant effect to the removal efficiencies of each facility due to its dilution factor. In addition to that, there was no significant correlation of ADD to the mean concentrations of pollutants. Generally, stormwater runoff contains significant amount of pollutants that can cause harmful effects to the environment if not treated. Also, the component of this LID facility such as pre-treatment zone, media filters and vegetation contributed to the effectivity of the LID facilities in reducing the amounts of pollutants present in stormwater runof.

  • PDF

Case Analysis and Statistical Characteristics of a Railroad Weather-Related Accidents and Incidents each Railroad Line in the Korean Peninsula (노선별 철도기상사고의 통계적 특성 및 사례분석)

  • Park, Jong-Kil;Jung, Woo-Sik;Lee, Jae-Su;Kim, Eun-Byul
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • This paper aims to find out the statistical characteristics of railroad weather-related accidents and incidents of each railroad line and then reduce the railroad accidents and prepare for the climate change. For this, we used data of KROIS and Korea railroad accidents report during 1996-2008. The results are as follows; Gyeongbu line is the most vulnerable line to railroad weather-related accidents, Yeongdong and Taebaek line are also the vulnerable line. The main railroad weather-related accidents and incidents is a railway obstruction and the next is a signal failure, a power supply failure. The second cause of a railway obstruction was some different for each line, but the main cause was a collapsed roadbed. We knew that the cold front accompanied with a heavy rainfall for a short time is the main weather pattern which cause the railroad accidents.

Restoration and Analysis of Chugugi Rainfall Data in 『Gaksadeungnok』 for the Gyeongsang-do during the Joseon Dynasty (『각사등록』에 의한 조선시대 경상도지역 측우기 강우량자료 복원 및 분석)

  • Cho, Ha-Man;Kim, Sang-Won;Park, Jin;Chun, Young-Sin
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.481-489
    • /
    • 2014
  • The Chugugi and Wootaek data of Gyeongsang-do (Dagu, Jinju, Goseong) were restored from "Gaksadeungnok", the governmental documents reported by the local government to the central during the Joseon Dynasty, and analyzed. The duration of the restored data represents 6 years for Daegu (1863, 1872, 1890, 1897, 1898, and 1902), 3 years for Jinju (1897, 1898, and 1900), and 2 years for Goseong (1871 and 1873). Total number of the restored data was 134, including 83 in Daegu, 25 in Jinju, and 26 in Goseong with the period ranging from March to September. The summer data from June to August accounts for approximately 50% (73 data), while the April data also shows relatively high number of 22, followed by September and March. Most data was collected from March to October, while this time winter data was not found even in October. The rainfall patterns using Chugugi data were investigated. First, the number of days with rainfall by annual mean showed 41 days in Daegu, 39 in Jinju, 33 in Goseong, respectively. In terms of the time series distribution of daily rainfall, the ratio between the number of occurrences with over 40 mm of heavy rainfall and the number of rainy days showed 14 times (8%) in Daegu, 24 (39%) in Jinju, and 4 (6%) in Goseong, respectively. The maximum daily rainfall during the period was recorded with 80mm in Jinju on August 24, 1900. The result of analyzing monthly amount of rainfall clearly indicated more precipitation in summer (June, July and August) with the relatively high records of 284 mm and 422 mm in April, 1872 and July, 1902, respectively, in Daegu, while Jinju recorded the highest value of 506 mm in June, 1898. When comparing the data with those observed by Chugugi in Seoul during the same period from "Seungjeongwonilgi", the monthly rainfall patterns in Daegu and Seoul were quite similar except for the year of 1890 and 1897 in which many data were missing. In particular, in June 1898 the rainfall amount of Jinju recorded as much as 506 mm, almost 4 times of that of Seoul (134 mm). Based on this, it is possible to presume that there was a large amount of the precipitation in the southern region during 1898. According to the calculated result of Wootaek data based on Chugugi observations, the unit of 1 'Ri' and 1 'Seo' in Daegu can be interpreted into 18.6 mm and 7.8 mm. When taking into consideration with the previous result found in Gyeonggi-do (Cho et al., 2013), 1 'Ri' and 1 'Seo' may be close to 20.5 mm and 8.1 mm, however, more future investigations and studies will be essential to verify the exact values.

A Study on Rainfall-Pattern Analysis for determination of Design flow in small watershed (소유역의 설계유량 산정을 위한 강우현상 분석에 관한 연구)

  • 박찬영;서병우
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.13-18
    • /
    • 1981
  • The rainfall pattern analysis on time distribution characteristics of rainfall rates in important in determination of design flow for hydraulic structures, particularly in urban area drainage network system design. The historical data from about 400 storm samples during 31 years in Seoul have been used to investigate the time distribution of 5-minute rainfall in the warm season. Time distribution relations have been deveolped for heavy stroms over 20mm in total rainfall and represented by relation percentage of total storm rainfall to percentage of total storm time and grouping the data according to the quartile in which rainfall was heaviest. And also time distribution presented in probability terms to provide quantitative information on inter-strom variability. The resulted time distribution relations are applicable to construction of rainfall hyetograph of design storm for determination of design flow hydrograph and identification of rainfall pattern at given watershed area. They can be used in conjuction with informations on spatstorm models for hydrologic applications. It was found that second-quartile storms occurred most frequently and fourth-quartile storms most infrequently. The time distribution characteristics resulted in this study have been presented in graphic forms such as time distribution curves with probability in cumulative percent of storm-time and precipitation, and selected histograms for first, second, third, and fourth quartile stroms.

  • PDF

Quantitative Rainfall Estimation for S-band Dual Polarization Radar using Distributed Specific Differential Phase (분포형 비차등위상차를 이용한 S-밴드 이중편파레이더의 정량적 강우 추정)

  • Lee, Keon-Haeng;Lim, Sanghun;Jang, Bong-Joo;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.57-67
    • /
    • 2015
  • One of main benefits of a dual polarization radar is improvement of quantitative rainfall estimation. In this paper, performance of two representative rainfall estimation methods for a dual polarization radar, JPOLE and CSU algorithms, have been compared by using data from a MOLIT S-band dual polarization radar. In addition, this paper presents evaluation of specific differential phase ($K_{dp}$) retrieval algorithm proposed by Lim et al. (2013). Current $K_{dp}$ retrieval methods are based on range filtering technique or regression analysis. However, these methods can result in underestimating peak $K_{dp}$ or negative values in convective regions, and fluctuated $K_{dp}$ in low rain rate regions. To resolve these problems, this study applied the $K_{dp}$ distribution method suggested by Lim et al. (2013) and evaluated by adopting new $K_{dp}$ to JPOLE and CSU algorithms. Data were obtained from the Mt. Biseul radar of MOLIT for two rainfall events in 2012. Results of evaluation showed improvement of the peak $K_{dp}$ and did not show fluctuation and negative $K_{dp}$ values. Also, in heavy rain (daily rainfall > 80 mm), accumulated daily rainfall using new $K_{dp}$ was closer to AWS observation data than that using legacy $K_{dp}$, but in light rain(daily rainfall < 80mm), improvement was insignificant, because $K_{dp}$ is used mostly in case of heavy rain rate of quantitative rainfall estimation algorithm.

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.

Slope Stability Assessment Induced by Variation in Mountain Topography and Rainfall Infiltration (산지지형 및 강우 침투양상 변화에 따른 산지사면 안정성 평가)

  • Kim, Man-Il;Lee, Seung-woo;Kim, Byung-Sik
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • Approximately 64 percent of Korean territory is covered with mountains, and there is occurred a continuous mountain disaster such as landslide, debris flow and slope failure around mountain slopes due to heavy rainfall and typhoon in the summer season. Even in such a reality, the development of mountain areas is being carried out through the development and expansion of social infrastructures centered on mountain areas, but systematic management is insufficient. Constructions of a forest road facility for mountain slopes can be a cause of mountain disasters intensively in the summer season due to artificially changing the mountain area. In this unstable mountain environment, efforts to build a disaster-resistant environment are urgently needed. This research is to analyze the stability of mountain slopes according to soil depth (1~5 m) and mountain slope ($20{\sim}60^{\circ}$) considering the characteristics of rainfall infiltration under extreme rainfall conditions. As a result, the stability of the mountain slope was found to be different according to the depth of soils and the saturation area of the soil layer. As well as the stability of the mountain area was found to be lower than that of the natural mountain area. Specially, rainfall infiltration occurs at the upper slope of the forest road. For this reason, the runoff phenomenon of rainfall infiltration water occurs clearly when the depth of soil layer is low.

Changes in Localized Heavy Rain that Cause Disasters Due to Climate Crisis - Focusing on Gwangju (기후 위기로 인한 재난을 야기하는 집중호우 변화 - 광주광역시를 중심으로)

  • Kim, Youn-Su;Chang, In-Hong;Song, Kwang-Yoon
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.162-175
    • /
    • 2021
  • Recently, due to global warming, the average temperature of the earth has risen, and the glaciers in the Antarctic and Arctic melt, leading to a rise in sea level, which is accompanied by powerful natural disasters such as strong typhoons and tsunamis around the world. Accordingly, a precipitation in summer in Korea also increased, and changes in the form of precipitation were showed with the increase. Compared to the past, the frequency of localized heavy rain is increasing, and the damage from flooding and flooding is increasing day by day. In this study, based on the precipitation data measured in hours from May to September from 2016 to 2021 according to the change in the precipitation form, according to the nature of the torrential rain investigated the change in the summer precipitation form. In addition, the trend of localized heavy rain from 2016 to 2021 was confirmed by classifying them into two types: localized heavy rains caused by cyclones and weather front, and by typhoons and large-scale cyclones. Through this, the change in precipitation due to the climate crisis should not be viewed as a single phenomenon, it should be reflected and discussed on our life focused on scientific and technological development, and it should be used as a stepping stone for realizing a humanistic.

Variation in Water Quality of Streams around Channel Catfish Ponds (차넬메기 양식장 주변 하천수의 수질 변동)

  • 이정열;클라우데이보이드
    • Journal of Aquaculture
    • /
    • v.12 no.4
    • /
    • pp.323-331
    • /
    • 1999
  • Most of channel fish farming in Alabama are still earthen pond style, and filled by rainfall and runoff. The water levels of ponds are maintained with stand-pipe, and the effluent from ponds very little discharged at usual time except ant heavy rains and crop season. Overflow from ponds following rains occurs mostly in winter and early spring when stream flows high. In this study to know how much effluents fish ponds affected to streams which are nearby ponds, a survey carried out on the variation of water quality of seven streams and effluents at heavy rains. Water samples were collected at 14 sites on upstream (did not affected by effluents) and downstream(being affect by effluents), and sampled monthly from August 1997 to August 1998. There were no clear trends of difference in most water quality variables between upstream and downstream of catfish farms during a year. The effluents from ponds after heavy rains were not highly polluted, but sometimes have elevated concentrations of TSS. Nitrogen content of effluents was higher than that of routine streams , but phosphorus was not clear. From this result suggest than the effluents from catfish farm are not having adverse impacts on stream water quality still yet .

  • PDF

A Study on Rainfall-induced Erosion of Land Surface on Reinforced Slope Using Soil Improvement Material (지반 개량재에 의한 보강사면의 강우시 표면침식에 관한 연구)

  • Kim, You-Seong;Kim, Jae-Hong;Bhang, In-Hwang;Seo, Se-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2013
  • Heavy rainfall intensity may cause shallow slope failures and debris flow by rill erosion and scour on land surface. The paper represents the difference between native soil (weathered soil) and reinforced soil, which is mixed by hardening agent with flyash as main material, for investigating experimental findings of rill erosion and erosion. Results obtained from artificial rainfall simulator show that erosion rate of reinforced soil mixed with hardening agent is reduced by 20% because an amount of eroded soil on slope surface is inversely proportional to the increase of soil strength. For example, rainfall of 45mm (at the elapsed time of 25mins in rainfall intensity of 110mm/hr) triggers rill erosion on native soil surface, but the rill erosion on reinforced soil surface does not even occur at 330mm rainfall (at the elapsed time of 3hrs in rainfall intensity of 110mm/hr). As a result of slope stability analysis, it was found that the construction method for reinforced soil surface would be more economical, easy and fast construction technology than conventional reinforcement method.