• 제목/요약/키워드: A flow velocity

검색결과 6,211건 처리시간 0.043초

슬러그 2상유동에서 전류형식 전자기유량계 수치적 신호예측 및 보정 (Numerical Signal Prediction and Calibration Using the Theory of a Current-Type Electromagnetic Flowmeter for Two-Phase Slug Flow)

  • 안예찬;오병도;김종록;김무환;강덕홍
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.671-686
    • /
    • 2005
  • The transient nature and complex geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et al.). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. The velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method, and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for simulating slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are proposed for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

가진 펌프에 연결된 곡관 출구의 직관에서 난류진동유동의 속도분포와 전단응력분포 (Velocity Profile and Wall Shear Stress Distributions of Developing Turbulent Oscillatory Flows in an Oscillator Connected to Straight Duct Located in Exit Region of a Curved Duct)

  • 손현철;이행남;박길문
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1378-1386
    • /
    • 2002
  • In the present study, velocity profile and wall shear stress distributions of developing turbulent oscillatory flows in an oscillator connected to straight duct located in exit region of a curved duct was investigated experimentally. The experimental study for air flows was conducted to measure axial velocity profiles, shear stress distributions by using the Laser Doppler Velocimetry(LDV) system with the data acquisition and processing system of Rotating Machinery Resolver(R.M.R) and PHASE software. The results obtained from experimental studies are summarized as follows. The critical Reynolds number for a change from transitional oscillatory flow to turbulent flow was about 7500, in the 60region of dimensionless axial position which was considered as a fully developed flow region. The turbulent oscillatory flow, velocity profiles of the inflow period in the entrance region were gradually developed, but those of the outflow period were not changed nearly. Velocity profiles of inflow and outflow were shown as a symmetric form in a fully developed flow region. The wall shear stress distributions of turbulent oscillatory flow increase rapidly as the flow proceeds to downstream and flow was in good agreement with the theoretically.

측정자동화에 의한 입구연결부 형상이 L-형인 디젤매연필터 입.출구에서의 유속 분포에 관한 연구 (A Study on Flow Velocity Distribution at Inlet and Exit of Diesel Particulate Filter with L-Shape Inlet Connector Using Automatic Measurement)

  • 이충훈;배상홍;최웅;이수룡
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.93-100
    • /
    • 2007
  • The flow velocity distribution at inlet and exit of Diesel Particulate Filter(DPF) by fabricating L-shape connector with the DPF was measured using a Pitot-tube and 2-D transverse machine. An adaptor designed for making the Pitot tube probe access to the inlet and exit of the DPF was connected with the inlet and exit flange of the DPF, respectively. The Pitot tube which was mounted in the 2-D positioning machine could access to the inlet and exit of the DPF through the rectangular window of the adaptor. The L-shape connector in the DPF inlet has a flow guide which is a perforated steel pipe. The flow velocity distribution at the inlet of the DPF showed a chaotic velocity distribution which is different from that with a diffuser type connector. The velocity distribution at the exit of the DPF showed a crown shape which is similar to that of the diffuser type connector. The velocity distribution at the exit of DPF showed different patterns according to the air flow rate.

Effects of the Velocity Waveform of the Physiological Flow on the Hemodynamics in the Bifurcated Tube

  • Roh, Hyung-Woon;Kim, Jae-Soo;Suh, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.296-309
    • /
    • 2003
  • The periodicity of the physiological flow has been the major interest of analytic research in this field up to now Among the mechanical forces stimulating the biochemical reaction of endothelial cells on the wall, the wall shear stresses show the strongest effect to the biochemical product. The objective of present study is to find the effects of velocity waveform on the wall shear stresses and pressure distribution along the artery and to present some correlation of the velocity waveform with the clinical observations. In order to investigate the complex flow phenomena in the bifurcated tube, constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids, are determined, and pulsatile momemtum equations are solved by the finite volume prediction. The results show that pressure and wall shear stresses are related to the velocity waveform of the physiological flow and the blood viscosity. And the variational tendency of the wall shear stresses along the flow direction is very similar to the applied sinusoidal and physiological velocity waveforms, but the stress values are quite different depending on the local region. Under the sinusoidal velocity waveform, a Newtonian fluid and blood show big differences in velocity. pressure, and wall shear stress as a function of time, but the differences under the physiological velocity waveform are negligibly small.

Micro-PIV Measurements of In Vitro Blood Flow in a Micro-Channel

  • Park, Cheol-Woo;Lee, Sang-Joon;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제1권2호
    • /
    • pp.30-35
    • /
    • 2003
  • Flow characteristics of blood flow in a micro channel were investigated experimentally using a micro-PIV (Particle Image Velocimetry) velocity field measurement technique. The main objective of this study was to understand the real blood flow in micron-sized blood vessels. The Reynolds number based on the hydraulic diameter of micro-channel for deionized (DI) water was about Re=0.34. For each experimental condition, 100 instantaneous velocity fields were captured and ensemble-averaged to get the spatial distributions of mean velocity. In addition, the motion of RBC (Red Blood Cell) was visualized with a high-speed CCD camera. The captured flow images of nano-scale fluorescent tracer particles in DI water were clear and gave good velocity tracking-ability. However, there were substantial velocity variations in the central region of real blood flow in a micro-channel due to the presence of red blood cells.

  • PDF

균일입구유속 조건의 나선관 입구영역의 층류 유동 (LAMINAR FLOW IN THE ENTRANCE REGION OF HELICAL TUBES FOR UNIFORM INLET VELOCITY CONDITIONS)

  • 김영인;박종호
    • 한국전산유체공학회지
    • /
    • 제13권1호
    • /
    • pp.21-27
    • /
    • 2008
  • A numerical study for laminar flow in the entrance region of helical tubes for uniform inlet velocity conditions is carried out by means of the finite volume method to investigate the effects of Reynolds number, pitch and curvature ratio on the flow development. This results cover a curvature ratio range of 1/10$\sim$1/320, a pitch range of 0.0$\sim$3.2, and a Reynolds number range of 125$\sim$2000. It has been found that the curvature ratio does significantly effect on the angle of flow development, but the pitch and Reynolds number do not. The characteristic angle $\phi_c(=\phi/\sqrt{\delta})$, or the non-dimensional length $\overline{l}(=l\sqrt{\delta}cos(atan\lambda)/d)$ can be used to represent the flow development for uniform inlet velocity conditions. In uniform inlet velocity conditions, the growth of boundary layer delays the flow development attributed to centrifugal force, and in which conditions the amplitude of flow oscillations is smaller than that in parabolic inlet velocity conditions. If the pitch increases or if the curvature ratio or Reynolds number decreases, the minimum friction factor and the fully developed average friction factor normalized with the friction factor of a straight tube and the flow oscillations decrease.

축류 홴의 익단누설와류 및 후류에서 유량에 따른 변동속도의 주파수 특성 (Frequency Characteristics of Fluctuating Velocity According to Flow Rates in a Tip Leakage Vortex and a Wake Flow in an Axial Flow Fan)

  • 장춘만;김광용;후카노토오루
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.181-188
    • /
    • 2004
  • The frequency characteristics in an axial flow fan operating at a design and three off-design operating conditions have been investigated by measuring the velocity fluctuation of a tip leakage vortex and a wake flow. Two hot-wire probe sensors rotating with the fan rotor. a fixed and a moving ones, were introduced to obtain a cross-correlation coefficient between two sensors as well as the fluctuating velocity. The results show that the spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region of higher flow rates than those in the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition. Detailed wake flow just downstream of the rotor blade was also measured by the rotating hot-wire sensor. The peak frequency of a high velocity fluctuation due to Karman vortex shedding in the wake region is mainly observed at the higher flow rate condition than that in the design point.

정4각 덕트 입구영역에서 천이파동유동의 속도분포와 입구길이에 관한 연구 (A study on velocity profiles and inlet length of developing transitional pulsating flows in the entrance region of a square duct)

  • 유영태;모양유;홍성삼
    • 오토저널
    • /
    • 제15권2호
    • /
    • pp.92-104
    • /
    • 1993
  • In the present study, the velocity profiles and entrance length of developing transitional pulsating flows are investigated both analytically and experimentally in the entrance region of a square duct. The systems of conservation equations for transitional pulsating flows in a square duct are solved analytically by linearizing the non-linear convective terms. Analytical solutions are obtained in the form of infinite series for velocity pofiles. The experimental study for the air flow in a square duct(40mm*40mm*4000mm) is carried out to measure velocity profiles and other parameters by using a hot-wire anemometer with a data acquisition and processing system. The distribution of velocity profiles( $u_{ps}$ / $u_{m,ta}$) in the decelerating period is higher than in the accelerating period. The distribution of the axial component of the axial component of velocity in the transitional flow is nearly uniform in the central region of the duct, and decrease rapidly near the wall. The entrance length correlation of the transitional pulsating flows in a square duct is obtained to be $L_{e}$/ $D_{h}$=0.83 $A_{1}$R $e_{ta}$ /(.omega. sup+1)$^{2}$TEX>

  • PDF

전자기 토모그래피를 이용한 액체 금속 속도장 측정 (Measurement of velocity Pronto in Liquid Metal Flow Using Electromagnetic Tomography)

  • 안예찬;김무환;최상호
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1271-1278
    • /
    • 2004
  • In order to measure non-intrusively velocity profile in liquid metal flow, a modified electromagnetic flowmeter was designed, which was based on electromagnetic tomography technique. Under the assumption that flow is fully-developed, axisymmetric and rectilinear, the velocity profile was reconstructed after the flowmeter equation, the first kind of Fredholm integration equation, was linearized. In reconstruction process Tikhonov regularization method with regularization parameter was used. The reconstructed velocity profile had the nearly same as turbulent flow profile which was approximately represented as log law. In addition, flowmeter output fur a fixed magnet rotation angle was linearly proportional to flow rate. When magnet rotation angle was 54$^{\circ}$, axisymmetric weight function was nearly uniform so that the flowmeter gives a constant signal for any fully-developed, axisymmetric and rectilinear profile with a constant flow rate.

전자기 토모그래피를 이용한 액체 금속 속도장 측정 (Measurement of Velocity Profile in Liquid Metal Flow Using Electromagnetic Tomography)

  • 최상호;안예찬;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1749-1754
    • /
    • 2004
  • In order to measure non-intrusively velocity profile in liquid metal flow, a modified electromagnetic flowmeter was designed, which was based on electromagnetic tomography technique. Under the assumption that flow is fully-developed, axisymmetric and rectilinear, the velocity profile was reconstructed after the flowmeter equation, the first kind of Fredholm integration equation, was linearized. In reconstruction process Tikhonov regularization method with regularization parameter was used. The reconstructed velocity profile had the nearly same as turbulent flow profile which was approximately represented as log law. In addition, flowmeter output for a fixed magnet rotation angle was linearly proportional to flow rate. When magnet rotation angle was $54^{\circ}$, axisymmetric weight function was nearly uniform so that the flowmeter gives a constant signal for any fully-developed, axisymmetric and rectilinear profile with a constant flow rate.

  • PDF