• 제목/요약/키워드: A cross section size

검색결과 365건 처리시간 0.023초

A Correlation Study of Clinical Outcomes by Quantification of Fatty Degeneration of the Subscapularis: Partial vs. Whole Cross-section

  • Park, Joo Hyun;Lee, Kwang Yeol;Rhee, Sung Min;Oh, Joo Han
    • Clinics in Shoulder and Elbow
    • /
    • 제21권2호
    • /
    • pp.67-74
    • /
    • 2018
  • Background: Fatty degeneration of rotator cuff is a well-known predictor of postoperative outcome. The purpose of this study was to evaluate the clinical features of rotator cuff tears involving subscapularis, and investigate whether fatty degeneration quantified from only the upper subscapularis correlates better with clinical outcomes than quantified from the whole subscapularis. Methods: We retrospectively analyzed 315 consecutive patients who underwent arthroscopic repair for rotator cuff tears involving subscapularis with a minimum follow-up of 1 year. Preoperative and postoperative visual analogue score for pain, range of motion and functional scores were assessed. Integrity of the repaired tendon was assessed at the 1-year follow-up with either magnetic resonance imaging or ultrasonography. Results: The mean Goutallier grade of whole cross-section was significantly lower than that of upper cross-section (1.59 vs. 1.71, p<0.05), but significantly higher than that of lower cross-section (1.59 vs. 1.01, p<0.05). In analysis of 37 re-tears, the occupancy of severe fatty degeneration in upper cross-section was 86.5%, which was significantly higher than that seen in whole cross-section (56.8%, p<0.05). We calculated the cut-off tear size for prediction of re-tears as 19.0 mm for retraction and 11.0 mm for superior-inferior. The cut-off Goutallier grade was 2.5 for both whole and upper cross-sections, but area under the curve was greater in the upper cross-section than the whole (0.911 vs. 0.807). Conclusions: As fatty degeneration of upper subscapularis demonstrated a more distinct spectrum than whole subscapularis, we suggest that measuring fatty degeneration of upper subscapularis can be a more useful method to predict clinical prognosis.

Study on the effect of Post Open laser Lumbar Micro-discectomy on the Cross Section Area of Deep Muscles in Patients (요추부 미세 현미경 레이져 디스크 수술(OLM)이 환자의 심부근육 단면적 크기에 미치는 영향)

  • Kong, Bong-Jun;Kim, Jin-Sang;Min, Dong-Ki
    • PNF and Movement
    • /
    • 제10권2호
    • /
    • pp.25-31
    • /
    • 2012
  • Purpose : The purpose of this study is to figure out the effects of Open Laser Microdiscectomy(OLM) on deep muscles by comparing multifidus and longissimus muscle size (cross section area; CSA) of pre and post operation. Methods : The subjects consisted of forty patients who had OLM. The data were analyzed with paired t-test comparing left and right deep muscle CSA of pre and post-operation, and both the deep muscle CSA of pre and post-operation, using SPSS ver. 15.0 program. Results : The results of this study showed a significant difference in deep muscle size (CSA) between pre and post operation (p<.05). Although there was not a meaningful difference between right and left deep muscle size (CSA) in pre operation (p>.05), there was a significant difference between both of them in post operation (p<.05). Conclusion : Therefore we made the conclusion that the operation causes decrease of muscle tone in deep muscles and muscle imbalance by causing muscle atrophy in the lumbar deep muscle after the operation.

An Experimental Study on the Fire Resistance Performance of the Reinforced Concrete Columns According to the Cross Section Size and Depth of Concrete Cover (단면크기 및 피복두께 변화에 따른 철근콘크리트 기둥의 내화성능에 관한 실험적 연구)

  • Cho, Kyung-Suk;Yeo, In-Hwan;Cho, Bum-Yeon;Kim, Heung-Youl;Min, Byung-Yeol
    • Fire Science and Engineering
    • /
    • 제25권1호
    • /
    • pp.78-84
    • /
    • 2011
  • Recent researches of the fire resistance in concrete focus on how to secure relevant functions in the high strength concrete. However, the demand of normal strength concrete less than 40 MPa takes most of the total concrete demand. Therefore, fire resistance study needs to cover not only high strength concretes but also normal strength concretes. This study evaluated the fire resistance performance of 40 MPa concrete columns, taking the concrete covering thickness and the size of section as variables. Consequently, the fire resistance performance improved as the section size and the covering thickness became larger.

Idiosyncratic Volatility, Conditional Liquidity, and Cross-section of Stock Returns in Korea (고유변동성, 조건부 유동성, 그리고 주식수익률의 횡단면에 관한 연구)

  • Yun, Sang-Yong;Cho, Seong-Soon;Park, Soon-hong
    • Asia-Pacific Journal of Business
    • /
    • 제12권1호
    • /
    • pp.121-134
    • /
    • 2021
  • Purpose - This study examines whether flight-to-liquidity (FTL) explains the dynamic liquidity risk on stock returns, and whether it has a significant influence on determinants the cross-section of stock returns. Design/methodology/approach - This study suggests a new risk factor, dynamic liquidity hedge portfolio (DLP), to reflect the dynamic impact of liquidity risk on stock returns and the Fama-MacBeth 2 stage regression analysis is employed in order to analyze the data. Findings - First, the DLP factor shows more positive and significant beta for the small or illiquidity stocks. Second, the DLP shows a different influence than SMB (size risk factor), HML (value risk factor), NMP (liquidity risk factor), FTVOL (total volatility factor) in determining the cross-section of stock returns. In addition, the DLP has a statistically significant risk premium of around 5%, which is relatively larger than other risk factors. Research implications or Originality - This study has academic value in terms of newly confirming that the DLP factor has a more significant impact on cross-sectional determination of stock returns than other risk factors by proposing a conditional liquidity factor that can explain the FTL phenomenon.

Development of Elderly Women's Dress Form According to Their Somatotypes for the Silver Apparel Industry

  • Suh, Chu-Yeon
    • Journal of Fashion Business
    • /
    • 제8권6호
    • /
    • pp.25-38
    • /
    • 2004
  • The purpose of this study is to develop a dress form for elderly women according to their somatotype to be used for improving the fit of garments and patterns. Analyzing each somatotype, there was a significant difference among the 4 somatotypes in most of measure items. Bend-forward Group had shorter front length items. Abdomen-fat Group had lower upper-body values than Average Group and similar lower-body values to Fat Group. In most items except height, Fat Group had the biggest values. Analyzing the mean cross-section according to the section measurement parts, no difference existed in shoulder part and under bust part. However, in upper bust, bust, waist, abdomen, high hip, and hip parts, a significant difference existed. Also, according to the results of the mean cross-section as well as the average cross overlap section for each somatotype, there was a significant difference among the four somatotypes. Thus, Abdomen-fat Group and Fat Group were similar, while Bend-forward Group and Average Group were alike. According to the increase of age, lower body tended to have more conspicuous changes. Analyzing the profile of somatotypes, there existed a obvious significant difference among the 4 somatotypes, implying that the characteristics of somatotype need to be reflected when to develop dress forms for elderly women. Therefore, these differences must be an essential factor in pattern design. Comparing the current dress form with the dress form developed with simulation, we could find that a dress form developed for elderly women which reflects the characteristics of body shape is much better than a dress form developed by simple size variation such as small, medium and large size divisions to improve the fit of garments and pattern designs.

A robust identification of single crack location and size only based on pulsations of the cracked system

  • Sinou, Jean-Jacques
    • Structural Engineering and Mechanics
    • /
    • 제25권6호
    • /
    • pp.691-716
    • /
    • 2007
  • The purpose of the present work is to establish a method for predicting the location and depth of a crack in a circular cross section beam by only considering the frequencies of the cracked beam. An accurate knowledge of the material properties is not required. The crack location and size is identified by finding the point of intersection of pulsation ratio contour lines of lower vertical and horizontal modes. This process is presented and numerically validated in the case of a simply supported beam with various crack locations and sizes. If the beam has structural symmetry, the identification of crack location is performed by adding an off-center placed mass to the simply supported beam. In order to avoid worse diagnostic, it was demonstrated that a robust identification of crack size and location is possible if two tests are undertaken by adding the mass at the left and then right end of the simply supported beam. Finally, the pulsation ratio contour lines method is generalized in order to be extended to the case of rectangular cross section beams or more complex structures.

Three-Dimensional Flow Analysis around Rolling Stock with Square Cross Section Using Low Re ${\kappa}-{\epsilon}$ (사각 단면을 갖는 철도차량 주위의 3차원 유동해석)

  • Jang, Yong-Jun
    • Journal of the Korean Society for Railway
    • /
    • 제9권6호
    • /
    • pp.772-777
    • /
    • 2006
  • Three-dimensional numerical study is performed for the flow analysis around the rolling stock with square cross section (Mugungwha train model). The height (H) of rolling stock is considered as the characteristic length and the total length of rolling stock is 40 which correspond to 1/2 unit of rolling stock. The gap between the surface and rolling stock is 0.17H which is average value. The relative velocity between the surface and rolling stock is assumed to be zero and Re=10,000 based on the characteristic length. Low Re ${\kappa}-{\epsilon}$[15] is employed for the calculation of turbulence which resolve all the way to the solid surface (laminar sub-layer). Large flow separation occurred at the front head of train and a pair of vortex is generated on both top and side of rolling stock. The behavior of vortices on the top of the rolling stock is believed to affect the performance of the pantograph which should be intensively investigated. The difference between the high pressure in the front stagnation region of train and the low pressure in the rear separated region causes a large pressure drag. A large pair or vortex are generated in the rear of train and the size of vortex is increased more than the size of cross section of train.

Calculating the Threshold Energy of the Pulsed Laser Sintering of Silver and Copper Nanoparticles

  • Lee, Changmin;Hahn, Jae W.
    • Journal of the Optical Society of Korea
    • /
    • 제20권5호
    • /
    • pp.601-606
    • /
    • 2016
  • In this study, in order to analyze the low-temperature sintering process of silver and copper nanoparticles, we calculate their melting temperatures and surface melting temperatures with respect to particle size. For this calculation, we introduce the concept of mean-squared displacement of the atom proposed by Shi (1994). Using a parameter defined by the vibrational component of melting entropy, we readily obtained the surface and bulk melting temperatures of copper and silver nanoparticles. We also calculated the absorption cross-section of nanoparticles for variation in the wavelength of light. By using the calculated absorption cross-section of the nanoparticles at the melting temperature, we obtained the laser threshold energy for the sintering process with respect to particle size and wavelength of laser. We found that the absorption cross-section of silver nanoparticles has a resonant peak at a wavelength of close to 350 nm, yielding the lowest threshold energy. We calculated the intensity distribution around the nanoparticles using the finite-difference time-domain method and confirmed the resonant excitation of silver nanoparticles near the wavelength of the resonant peak.

Predictability of Overnight Returns on the Cross-sectional Stock Returns (야간수익률의 횡단면 주식수익률에 대한 예측력)

  • Cheon, Yong-Ho
    • Asia-Pacific Journal of Business
    • /
    • 제11권4호
    • /
    • pp.243-254
    • /
    • 2020
  • Purpose - This paper explores whether overnight returns measured from the last closing price to today's opening price explain the cross-section of stock returns. Design/methodology/approach - This study is conducted using the Korean stock market data from 1998 to 2018, obtained from DataGuide database. The analysis begins with portfolio-level tests, followed by firm-level cross-sectional regressions. Findings - First, when decile portfolios sorted on the daily average of overnight returns in the previous months, the highest decile portfolio exhibits a significant negative risk-adjusted return. This suggests that stocks with higher average overnight returns are temporarily overvalued due to buying pressure from investors. Second, at least 6 months of persistence exists in average overnight returns, which is in line with the results reported by Barber, Odean and Zhu (2009) that investor sentiment persists over several weeks. Finally, Fama-MacBeth cross-sectional regression of expected returns after controlling for a variety of firm characteristic variables such as firm size, book-to-market ratio, market beta, momentum, liquidity, short-term reversal, the slope coefficient for overnight returns remains negative and statistically significant. Research implications or Originality - Overall, the evidence consistently suggests that overnight return is considered as a new priced factor in the cross-section of expected returns. The findings of this paper not only adds to finance literature, but also could be useful to practitioners in making stock investment decision.

Fiber Orientation Factor on a Circular Cross-Section in Concrete Members (콘크리트 원형단면에서의 섬유분포계수)

  • Lee, Seong-Cheol;Oh, Jeong-Hwan;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • 제26권3호
    • /
    • pp.307-313
    • /
    • 2014
  • In order to predict the post-cracking tensile behavior of fiber reinforced concrete, it is necessary to evaluate the fiber orientation factor which indicates the number of fibers bridging a crack. For investigation of fiber orientation factor on a circular cross-section, in this paper, cylindrical steel fiber reinforced concrete specimens were casted with the variables of concrete compressive strength, circular cross-section size, fiber type, and fiber volumetric ratio. The specimens were cut perpendicularly to the casting direction so that the fiber orientation factor could be evaluated through counting the number of fibers on the circular cross-section. From the test results, it was investigated that the fiber orientation factor on a circular cross-section was lower than 0.5 generally adopted, as fibers tended to be perpendicular to the casting direction. In addition, it was observed that the fiber orientation factor decreased with an increase of the number of fibers per unit cross-section area. For rational prediction of the fiber orientation factor on a circular section, a rigorous model and a simplified equation were derived through taking account of a possible fiber inclination angle considering the circular boundary surface. From the comparison of the measured data and the predicted values, it was found that the fiber orientation factor was well predicted by the proposed model. The test results and the proposed model can be useful for researches on structural behavior of steel fiber reinforced columns with a circular cross-section.