• 제목/요약/키워드: A conference tool

검색결과 4,478건 처리시간 0.035초

자동차 본네트 트림 금형 스트립 레이아웃 설계에 관한 연구 (A study on the design of a strip Lay-out for trimming tool of the automobile bonnet)

  • 정효상;이성수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.675-681
    • /
    • 2002
  • Parametric modeling and configuration design method are a important methods for rapid design in manufacturing. This paper proposes a relation rules which parametrically models a bonnet trimming tool based on Pro/Engineer. The concept of desogn is applied a trimming die of the bonnet outer panel. Trimming die have a many parameters. Each a parameter is related the die face and punch profile. A design system consists of a Pro/Engineer, a Pro/program.

  • PDF

CNC 가공시 복합 자유곡면상에서의 공구간섭 탐지와 수정 (Interference avoidance in CNC machining of compound free-form surfaces)

  • 이성근;양승한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.291-294
    • /
    • 2000
  • Free-form surfaces arise in shipbuilding, automotive and aerospace industries. Specially compound free-form surfaces so do. Machining complicated products consist of compound surface, it is very important to avold and remove tool interferences. By the way, in compound surfaces the tool interference can occur not only in the tool path direction but also in the other direction. A new tool interference detection and correction using tool interference conditions is suggested to identify and correct the tool interference in compound surfaces.

  • PDF

측벽 밀링에서 공구 변형 및 형상 정밀도 (Tool Deflection and Geometrical Accuracy in Side Wall Milling)

  • 류시형;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1811-1815
    • /
    • 2003
  • Investigated is the relationship between tool deflection and geometrical accuracy in side wall machining. Form error is predicted directly from the tool deflection without surface generation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error, and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacture. This study contributes to real time surface shape estimation and cutting process planning for the improvement of geometrical accuracy.

  • PDF

엔드밀링 가동시 절삭력 신호와 공구마모에 대한 실험적 연구 (An Experimental Study on Cutting Force Signal and Tool Wear in End Milling)

  • 박철기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.30-34
    • /
    • 1998
  • In-process monitoring of cutting conditions and tool wear is important for improving productivity. This paper is concerned with on-line monitoring of tool wear and cutting force in end milling operation. The experimental study deals with the relations between flank wear and cutting force signal. Tool wear is detected by monitoring of cutting signal. A monitoring procedure is shown in this paper. The influence of flank wear on cutting signal activity was examined. The results are presented in the form of graphs. The analysis of the cutting signal and flank wear curves provides useful indicators of unacceptable wear development in the tool.

  • PDF

엔드밀의 형상에 따른 가공정밀도 해석 (Analysis on the Surface Accuracy in according to Geometry of End Mill)

  • 고성림;이상규;김용현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.1001-1004
    • /
    • 2000
  • As tools for machining precision components, end mills and ball end mills are widely used. For the end mills have longer cylindrical shape comparing diameter, liable to deflect and induce deterioration of surface roughness. Tool geometry parameters and cutting process have complex relations with each other. So, It is hard to determine hew to select optimal tool geometry. So, to improve the stiffness, relationship between cutting process and tool geometry must be studied. In this study, relations between grinding wheel geometry, setting condition and tool geometry are revealed. For the purpose of studying relations between each parameter, the equivalent diameter of tool has been calculated assuming tool as a simple beam. By the various cutting simulations and experiments, tool geometry and cutting process has been studied.

  • PDF

TECHNOLOGY GAP APPROACH TO A DYNAMIC CHANGE M WORLD MACHINE TOOL MARKETS : A PANEL DATA ANALYSIS

  • Lee, Kong-Rae;Suh, Joong-Hae
    • 기술경영경제학회:학술대회논문집
    • /
    • 기술경영경제학회 1996년도 제10회 동계학술발표회 논문집
    • /
    • pp.154-178
    • /
    • 1996
  • This paper applies the technology-gap trade theory to explaining radical changes in the competitive positions of countries in world machine tool markets over the last three decades. It develops the notion that the innovation gaps in machine tools among countries led to the inter-country differences in the competitive performance in the sector as well as in its user sectors. Since competitive advantage largely depends on a capability to improve, create and apply technology to market competition, a higher innovative performance in one country than another is closely related to a higher innovative performance. A higher innovative performance in machine tools is also associated with a higher competitive performance of the large areas of its user sectors, due to sectoral interdependences and externalities generated by machine tool innovations. The results of empirical investigation through a panel data analysis show that the international gaps in machine tool innovations appeared to have a positive significant relationship with the differences in the export performance of both the machine tool sector and its user sector across countries.

  • PDF

공작기계 주축 테이퍼 결합부 정강성에 관한 연구 (A Study on the Static Stiffness in the Main Spindle Taper of Machin Tool)

  • 김배석;김종관
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.149-154
    • /
    • 2001
  • This paper presents the experimental study of the static stiffness for the BT Shank(7/24 Long Taper) and the HSK Tool Shank(1/10 Short taper). The static stiffness test was performed under different experimental conditions. The results obtained are as follows ; As known in the analysis results of the Load-Deflection diagram of the 7/24 Test tool shank, it is turned out that the diagram is a linear characteristics without regard to axial drawing force and according as the axial drawing force get to the 6kN, the static stiffness of the shank increase linearly. Thus the effective axial drawing force which maintains the static stiffness of the Main spindle taper of Machine Tool is larger than 6kN. It is found that the Load-Deflection diagram with 6kN of drawing force in the 1/10 Test tool shank is characterized by non-linear. But according as the axial drawing force is increasing by the 8kN, the diagram is characterized by linear. And increasing amount of deflection is about 60%. Therefore commendable axial drawing force is larger than 8kN. As a result, considering that the actual drawing force of the Machining Center is about 1300kgf and axial drawing force 12kN is equivalent amount as a 1220kgf, it is turned out that 1/10 Test tool shank superior to 7/24 Test tool shank in the static stiffness.

  • PDF

열간 단조 공정의 금형 수명 평가 (Evaluation of die life during hot forging process)

  • 이현철;박태준;고대철;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1051-1055
    • /
    • 1997
  • Hot forging is widely used in the manufacturing of automotive component. The mechanical, thermal load and thermal softening which is happened by the high temperature die in hot forging. Tool life of hot forging decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and workpieces. The service life of tools in hot forging process is to a large extent limited by wear, heat crack, plastic deformation. These are one of the main factors affecting die accuracy and tool life. It is desired to predict tool life by developing life prediction method by FE-simulation. Lots of researches have been done into the life prediction of cold forming die, and the results of those researches were trustworthy, but there have been little applications of hot forming die. That is because hot forming process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forming die by wear analysis and plastic deformation has been carried out. To predict tool life, by experiment of tempering of die, tempering curve was obtained and hardness express a function of main tempering curve.

  • PDF

Tool placement problem for a given part sequence on a flexible machine

  • Shinn Seong-Whan;Song Chang-Yong
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2001년도 춘계학술대회
    • /
    • pp.195-198
    • /
    • 2001
  • This paper addresses the problem of placing tools in a tool magazine with random-select capability on a flexible machine. The tool placement problem could be a significant portion of the total processing time. It is assumed that the total number of tools required to process a set of parts exceeds the available magazine capacity, and so tool switches may occur between two adjacent parts in a given part sequence. Two heuristics are presented so as to minimize the total travel distance of the tool magazine before the completion of all parts.

  • PDF

객체지향 모델링에 기반한 발전소 시뮬레이션 툴 개발 (Development of a Power Plant Simulation Tool Based on Object-Oriented Modeling)

  • 전상규;손기헌
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2004년도 춘계학술대회 논문집
    • /
    • pp.136-140
    • /
    • 2004
  • A power-plant simulation tool has been developed for training the plant operators and testing a plant control system. The simulation tool is composed of a graphic editor, a component model builder and a system simulation solver. Such new programing techniques as object-oriented modeling and GUI(Graphical User Interface) are employed in developing the simulation tool. The graphic editor is based on the OpenGL library for effective implementation of GUI while the component model builder is based on object-oriented programming for efficient generalization of component models. The developed tool has been verified through the simulation of a real power plant.

  • PDF