• Title/Summary/Keyword: A after-barley crop

Search Result 154, Processing Time 0.026 seconds

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

Studies on Wet Paddy Field Underdrainage Improvement in the Gum-Ho Area (I) (금호지구 저습답의 암거배수효과에 관한 연구(I))

  • 김조웅;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.82-95
    • /
    • 1980
  • This paper complies the results of the studies so far made on the subsoil improvement of subsurface drainage systems for wet paddy fields (those were located in the Gum-Ho area in Kyung Buk province) which had poor permeability and a high water table. In general, a drainage problem is an excess of water on the ground surface which can effect the productivity and bearing capacity of the soil. With drain pipe systems, (According to their depths and spacing) it may be possible to correct that problem. The experimentation consisted of three test plots, two of which included drain pipe systems with varing depths and width spacing of the pipes. The third plot (C) was an ordinary plot being exempt of a drain pipe system. In detail, the depth of plot A was 80 cm, and the width spacings began at 2. Om and increased by 2. Om up to 10. 0m. The depth of plot B was 60cm and the width spacing was the same as plot A. These tests were performed to research specific details; such as crop yeild, bearing capacity of the soil, the amount of underdrainage, surface cracks, root distribution, the water table level, the consumptive water depth and the soil moisture content. The test period lasted three years, from 1977 thru 1979. The results obtained were as follows: 1. During the test period, the weather conditions for the area tested were in accordance with the annual average for that area. Furthermore the precipitation factor during the spring cultivation season, the intermediate drainage period and the harvest drainage period was of optimum conditions for controling surface cracks, because of less precipitation than evaporation. 2. The difference in the level of the ground water table in plots A and B was hardly noticable, but the difference in the test plots and the ord. plot was greatly noticable. The test plots (A, B) were 30 to 40cm lower than the ordinary plot. On the whole, the ground water table of the ord. plot always stayed at a level of 15-20cm beneath the surface of the soil, the ground water table of the test plot A showed The difference in the depth of the pipe lower than the test plot B, while the test plots showed a remarkable descending effect. 3. The soil temperature in plot A was slightly core than in plot B with a difference of 0. 47$^{\circ}$C, but plot A was 1. 6$^{\circ}$C higher than the ord. plot during the flooding period, but after drainage the temperature difference climed to 2. 0$^{\circ}$C. 4. During the 3rd test year, the values of the cracks were recorded with the values of 59cm in plot A, 42cm in plot B and 15cm in the ordinary plot. Plots A and B had increased 2.5 times the value of the first year while the ordinary plot had remained the same. 5. The root weight of the rice was measured at a value of 77.2 gr. for plot A, 73.5 gr. for plot B and 65.3 gr. for the ord. plot. Therefore, the root growths in plots A and B were much more energetic than in the ord. plot. 6. The consumptive water depth measured during the 3rd year resulted in the values of 26. 0mm per day for plot A, and 24.9 mm per day for plot B, respectively. Therefore, both plot A and plot B maintained the optimum consumptive water depths, but the ordinary plot only obtained the value of 12.3 mm per day, which clearly showed less than the optimum consumptive water depth which is 20 to 30 mm/day. 7. The soil moisture content is in direct relationship to the ground water level. During drainage, test plot A decreased in its ground water level much more rapidly than the other two plots. Therefore, plot A had a much less soil moisture content. But this decreased water level could be directly effected by the weather conditions. 8. The relationship between the bearing capacity and the soil moisture content were directly inversely proportional. It can be assumed that the occurence of soil creaks is limited by the soil moisture content. Therefore, the greater the progress of the surface creaks resulted in a greater bearing capacity. So, tast plot A with a greater amount of surface cracks than the other test plots resulted in a greater bearing capacity. But, the bearing capacity at the harvest season could be effected by the drainage during the intermediate drainage period and by the weather conditions. 9. Comparing the production of the test plots to the ord. plot; there was an increased value of 840kg for plot A, 755kg for plot B and 695kg for the ord. plot in the rough rice. Therefore, plot A had an increase of 20% over the ordinary plot. The possibility of producing double crops was investigated. The effects on barley production in the test plots showed a value of 367kg per 10 acres, which substantiated the possibility of double crops because that value showed an increased value over the average yearly yield for those uplands. 10. So as a result, it can be recommended that by including a drain pipe system with the optimum conditions of an (80cm centimeter) depth and a (l0m) spacing will have a definite positive effect on the over all production capacity and quality of wetpaddy fields.

  • PDF

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF

Severe Outbreak of Rice Stripe Virus and Its Occurring Factors (벼줄무늬잎마름바이러스의 대 발생과 발생 요인)

  • Kim, Jeong-Soo;Lee, Gwan-Seok;Kim, Chang-Seok;Choi, Hong-Soo;Lee, Soo-Heon;Kim, Mi-Kyeong;Kwag, Hae-Ryun;Nam, Mun;Kim, Jeong-Sun;Noh, Tae-Hwan;Kang, Mi-Hyung;Cho, Jeom-Deog;Kim, Jin-Young;Kang, Hyo-Jung;Han, Jong-Woo;Kim, Byung-Ryun;Jeong, Sung-Soo;Kim, Ju-Hee;Kuo, Sug-Ju;Lee, Jung-Hwan;Kim, Tae-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.545-572
    • /
    • 2011
  • The genetic diagnosis methods by RT-PCR and Virion capture (VC)/RT-PCR against Rice stripe virus (RSV) were developed. Three diagnosis methods of seedling test, ELISA and RT-PCR were compared in virus detection sensitivity (VDS) for RSV. The VDS of ELISA for RSV viruliferous small brown plant hopper (SBPH) was higher with 40.5% than that of seedling test. The VDS of RT-PCR was higher with 21% than that of ELISA. The VDS of ELISA and VC/RT-PCR was same with 9.2% in average on the SBPH collected from fields at the areas of Gimpo, Pyungtaeg and Sihueng, Gyeonggi province in 2009. The specific primers of RSV for SBPH and rice plant were developed for the diagnosis by Real time PCR. The RQ value of Real time PCR for the viruliferous and non viruliferous SBPH was 1 for 50 heads of non viruliferous SBPH, 96.5 for 50 heads of viruliferous SBPH, 23.1 for 10 heads of viruliferous SBPH + 40 heads of non viruliferous SBPH, and 75.6 for 30 heads of viruliferous SBPH + 20 heads of non viruliferous SBPH. The RQ value was increased positively by the ratio of viruliferous SBPH. Full sequences of 4 genomes of RSV RNA1, RNA2, RNA3 and RNA4 were analysed for the 13 RSV isolates from rice plants collected from different areas. Genetic relationships among the RSV isolates of Korea, Japan and China were classified as China + Korea, and China + Korea + Japan by phylogenetic analysis for RSV RNA1 and RNA2. In case of RNA3 involved in pathogenicity, genetic relationship of RSV among the three countries was grouped into 3 as China, China + Korea, and Korea + Japan. According to the genetic relationships in RSV RNA4, RSV isolates were grouped into 4 as China, Korea, China + Korea + Japan, and Korea + Japan. Viruliferous insect rate (VIR) of RSV in average increased in each year from 2008 to 2010, and the rates were 4.3%, 6.1%, and 7.2%, respectively, at the 28 major rice production areas in 7 provinces including Gyeonggido. The highest VIR in each year was 11.3% of Gyeonggido in 2008, 20.1% of Jellanamdo in 2009 and 14.2% of Chungcheongbukdo in 2010. The highest VIR depending upon the investigated areas was 22.1% at Buan of Jellabukdo in 2008, 36% at Wando and Jindo of Jellanamdo in 2009, and 30.0% at Boeun of Chungcheongbukdo in 2010. Average population density (APD) of overwintered SBPH was 13.1 heads in 2008, 13.9 heads in 2009 and 5.6 heads in 2010. The highest APD was 39.1 and 60.4 heads at Buan of Jellabukdo in 2008 and 2009, respectively, and 14.0 heads at Pyungtaeg of Gyeonggido. The acreage of RSV occurred fields was 869 ha in the western and southern parts, mainly at Jindo and Wando areas, of Jellanamdo in 2008. In 2009, RSV occurred in the acreage of 21,541 ha covered whole country, especially, partial and whole plant death were occurred with infection rate of 55.2% at 3,025 plots in 53 Li, 39 Eup/Myun, 19 Si/Gun of Gyeonggido, Incheonsi, Chungcheongnamdo, Jeollabukdo and Jeollanamdo. Seasonal development of overwintered SBPH was investigated at Buan, Jeollabukdo, and Jindo, Jeollanamdo for 3 years from 2008. Most SBPH developed to the 3rd and 4th instar on the periods of May 20 to June 10, and they developed to the adult stage for the 1st generation on Mid and Late June. In 2009, all SBPH trapped by sky net trap were adult on May 31 to June 1 at Mid-western aeas of Taean, Seosan and Buan, and South-western areas of Sinan and Jindo. The population density of adult SBPH was 963 heads at Taean, 919 at Seocheon and 819 at Sinan area. The origin of these higher population of adult SBPH were verified from the population of non-overwintered SBPH but immigrant SBPH. From Mid May to Mid June in 2010, adult SBPH could not be counted as immigrant insects by sky net trap. The variation of RSV VIR was high with 2.1% to 9.5% for immigrant adult SBPH trapped by sky net trap at Hongsung of Chungcheongbukdo, Buan of Jeollabukdo and so forth in 2009. The highest VIR for the immigrant adult SBPH was 9.5% at Boryung of Chungcheongnamdo, followed by 7.9% at Hongsung of Chungcheongnamdo, 6.5% at Younggwang of Jeollanamdo, and 6.4% at Taean of Cheongcheongnamdo. The infection rate of RSV on rice plants induced by the immigrant adult SBPH cultivated near sky net trap after about 10 days from immigration on June 12 in 2009 was 84.6% at Taean, 65.4% at Buan and 92.9% at Jindo, and 81% in average through genetic diagnosis of RT-PCR. Barley known as a overwintering host plant of RSV had very low infection rate of 0.2% from 530 specimens collected at 10 areas covering whole country including Pyungtaeg of Gyeonggido. Twenty nine plant species were newly recorded as natural hosts of RSV. In winter annual plant species, 11 plants including Vulpia myuros showed RSV infection rate of 24.9%. The plant species in summer annual ecotype were 13 including Digitaria ciliaris with 44.9%, Echinochloa crusgalli var. echinata with 95.2% and Setaria faberi with 65.5% in infection rate of RSV. Five perennial plants including Miscanths sacchariflorus with infection rate of 33.3% were recorded as hosts of RSV. Rice cultivars, 8 susceptible cultivars including Donggin1 and 17 resistant ones including Samgwang, were screened in field conditions at 3 different areas of Buan, Iksan and Ginje in 2009. All the susceptible cultivars were showed typical symptom of mosaic and wilt. In 17 genetic resistant cultivar, 12 cultivars were susceptible, however, 5 cultivars were field-resistant plus genetic resistant to RSV as non symptom expression. When RSV was artificially inoculated at seedling stage to 4 cultivars known as genetic resistant and 3 cultivars known as genetic susceptible, the symptom expression in resistant cultivars was lower as 19.3% in average than that of 53.3% in susceptible ones. In comparison of symptom expression rate and viral infection rate using resistant Nampyung and susceptible Heugnam cultivars by artificial inoculation of RSV at seedling stage, the symptom expression of Heugnam was higher as 28% than 12% of Nampyung. However, virion infection of resistant Nampyung cultivar was higher as 12% reversely than 85% of susceptible Heugnam. Yield loss of rice was investigated by the artificial inoculation of RSV at the seedling stage of resistant cultivars of Nampyung and Onnuri, and susceptible cultivars of Donggin1 and Ungwang for 3 years from 2008. The average yield per plant was 7.8 g, 8.5 g and 13.8 g on rice plants inoculated at seedling stage, tillering stage and maximum tillering stage, respectively. The yield loss rate was increased by earlier infection of RSV with 51% at seedling stage, 46% at tillering stage and 13% at maximum tillering stage. In resistant rice cultivars, there was no statistically significant relation between infection time and yield loss. In natural fields on susceptible rice cultivar of Ungwang at Taean and Jindo areas in 2009, the yield loss rate was increased with same tendency to the infection hill rate having the corelation coefficient of 0.94 when the viral infection was over 23.4%.