• Title/Summary/Keyword: A New Control Scheme

Search Result 1,507, Processing Time 0.026 seconds

A Study on the New Control Scheme of Class-I Inverter for IH-Jar Applications with Clamped Voltage Characteristics Using Pulse frequency Modulation (주파수 변조 기법을 이용한 전압 클램프 특성을 갖는 유도가열용 Class-E 인버터의 새로운 제어에 관한 연구)

  • 이동윤;최영덕;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.133-139
    • /
    • 2003
  • In this paper, a new control scheme of Class-E inverter for Induction Heating (IH) Jar applications with clamped voltage characteristics using Pulse-Frequency-Modulation (PFM) is introduced. To reduce the voltage stress of switch, the proposed PFM control scheme doesn't need any auxiliary circuit in comparison to a family of Active Clamped Class-E (ACCE) inverter. It can decrease voltage stress of switch through modulation of switching frequency. The Class-E inverter using the proposed control scheme has the advantage of not only the same output power when it is compared with a Hybrid-Active Clamped Class-E (Hybrid-ACCE) inverter but also Zero-Voltage-Switching (ZVS), which are characteristics of conventional Class-E and ACCE inverter. The control principles and analysis of proposed method are explained in detail and its validity is verified through simulation and experimental results.

A New Hybird Control Scheme Using Active-Clamped Class-E Inverter with Induction Heating Jar for High Power Applications

  • Lee, Dong-Yun;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.104-111
    • /
    • 2002
  • This paper presents a new hybrid control scheme using Active-Clamped Class-E(ACCE) inverter for the Induction Heating (IH) jar. The proposed hybrid control scheme has characteristics, which acts as class-E inverter at lower switch voltage and ACCE inverter at higher switch voltage than reference voltage of the main switch by feeding back voltage of the switch. The proposedv hybrid control scheme also has advantage of conventional ACCE inverter such as Zero-Voltage-Switch(ZVS) of the main switch and the reduced switch voltage due to clamping cricuit. Moreover, the proposed hybrid control method using ACCE inverter has higher output power than convenional control scheme since ACCE inverter operates like class-E inverter at low input voltage condition. The principles of the proposed control are explained in detail and the validity of the proposed control scheme is verifed through the several interesting simulated and experimental results.

Traffic Signal Control Scheme for Traffic Detection System based on Wireless Sensor Network (무선 센서 네트워크 기반의 차량 검지 시스템을 위한 교통신호제어 기법)

  • Hong, Won-Kee;Shim, Woo-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.719-724
    • /
    • 2012
  • A traffic detection system is a device that collects traffic information around an intersection. Most existing traffic detection systems provide very limited traffic information for signal control due to the restriction of vehicle detection area. A signal control scheme determines the transition among signal phases and the time that a phase lasts for. However, the existing signal control scheme do not resolve the traffic congestion effectively since they use restricted traffic information. In this paper, a new traffic detection system with a zone division signal control scheme is proposed to provide correct and detail traffic information and decrease the vehicle's waiting time at the intersection. The traffic detection system obtains traffic information in a way of vehicle-to-roadside communication between vehicles and sensor network. A new signal control scheme is built to exploit the sufficient traffic information provided by the proposed traffic detection system efficiently. Simulation results show that the proposed signal control scheme has 121 % and 56 % lower waiting time and delay time of vehicles at an intersection than other fuzzy signal control scheme.

A New Sensorless Control Scheme Using Simple Duty Feedback Technique in DC-DC Converters (DC-DC 컨버터에서 Duty Feedback 을 이용한 새로운 센서리스 제어 기법)

  • Noh Hyeong-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.115-118
    • /
    • 2001
  • This paper presents a new sensorless control scheme using simple duty signal feedback technique in DC-DC converters. The proposed sensorless control scheme (DFC) has the characteristics that they show the same as operation performance of current mode control by using duty feedback technique without current sensor as well as present better dynamic response performance than conventional sensorless current mode control (SCM) in case that input source is perturbed by step change or DC input source includes the . harmonics. Also, the proposed control scheme has good noise immunity and simple control circuits since they have one feedback loop, and can be applied to all DC-DC converters. The concept and control principles of the proposed control scheme are explained in detail and the validity of the proposed control scheme is verified through several interesting simulated results.

  • PDF

A new hybrid control scheme for reduction of secondary diode voltage stresses Based on interleaved PFC Asymmetrical Half Bridge Topology (Asymmetrical 반브리지 컨버터의 이차측 다이오드 전압스트레스저감을 위한 새로운 하이브리드 제어기법)

  • Park, Nam-Ju;Lee, Dong-Yun;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1416-1418
    • /
    • 2005
  • This paper presents a new hybrid control method of asymmetrical half-bridge converter(AHBC) with low voltage stresses of the diodes and interleaved PFC(power factor correction). The proposed new control scheme can observe variation of secondary diodes voltage stresses by variation of duty ratio and then decide the control portions which are asymmetrical control and PFM(Pulse Frequency Modulation). Therefore, the proposed control scheme has many advantages such as a low rated voltage of the secondary diodes, low conduction loss according to the low voltage drop and wide zvs range by load variation. Through simulation results, the validity of the proposed control scheme is demonstrated.

  • PDF

A new vector control method for induction motor (새로운 유도전동기 벡터제어 기법)

  • 변윤섭;왕종배;백종현;박현준
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.680-687
    • /
    • 2000
  • In this paper we present a new vector control scheme for induction motor. An exact knowledge of the rotor flux position is essential for a high-performance vector control. The position of the rotor flux is measured in the direct scheme or estimated in the indirect schemes. Since the estimation of the flux position requires a priori knowledge of the induction motor parameters, the indirect schemes are machine parameter dependent. The rotor resistance and stator resistance among the parameters change with temperature. Variations in the parameters of induction machine cause deterioration of both the steady state and dynamic operation of the induction motor drive. Several methods have been presented to minimize the consequences of parameter sensitivity in indirect scheme. In this paper new estimation scheme of rotor flux position is presented to eliminate sensitivity due to resistance change with temperature. Simulation results are used to verify the performance of the proposed vector control scheme.

  • PDF

A study on the overload control of the ATM switching system (ATM 교환기 과부하제어 연구)

  • 기장근;최진규;김영선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.952-960
    • /
    • 1996
  • In this paper, a new overload control scheme is proposed for a control system in ATM switching system. The proposed control scheme includes a counter that conunts the number of accepted calls and is decreased at cach D time interval. In overload condition of call processor, the control scheme detects over load condition when the counter value reaches a certain threshold value. Under overload condition, processor utilization is measured and the value of the D is updataed according to the difference between measured processor utilization and target utilization. A new call is accepted accepted only if the value of the counter is less than the threshold value. In overflow condition of cell traffic, accept probability of new call is reduced exponetially according to the elapsed time. The results of simulation show that the proposed overload contorl scheme maintains the target utilization very well under the various processor overload conditions and reduces the cell loss probability under the cell overflow conditions.

  • PDF

A New Dynamic Routing Algorithm for Multiple AGV Systems : Nonstop Preferential Detour Algorithm (다중무인운반차 시스템의 새로운 동적경로계획 알고리즘 : 비정지우선 우회 알고리즘)

  • Sin, Seong-Yeong;Jo, Gwang-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.795-802
    • /
    • 2002
  • We present a new dynamic routing scheme for multiple autonomous guided vehicles (AGVs) systems. There have been so many results concerned with scheduling and routing of multiple AGV systems; however, most of them are only applicable to systems with a small number of AGVs under a low degree of concurrency. With an increased number of AGVs in recent applications, these AGV systems are faced with another problem that has never been occurred in a system with a small number AGVs. This is the stop propagation problem. That is, if a leading AGV stops then all the following AGVs must stop to avoid any collision. In order to resolve this problem, we propose a nonstop preferential detour (NPD) algorithm which is a new dynamic routing scheme employing an election algorithm. For real time computation, we introduce two stage control scheme and propose a new path searching scheme, k-via shortest path scheme for an efficient dynamic routing algorithm. Finally, the proposed new dynamic routing scheme is illustrated by an example.

Coordinated Control of ULTC and SVC Using a new control model of ULTC (새로운 ULTC 제어모델을 이용한 ULTC와 SVC의 협조제어)

  • Lee, Song-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.230-232
    • /
    • 2000
  • To improve the voltage profile of the load bus, it is important that the coordinated controls among the reactive power compensators at the distribution substation. However, the conventional control scheme of the Under Load Tap Changer (ULTC) is not proper for coordinate control with Static Var Compensator (SVC). This paper proposes a new control model for ULTC and a new coordinated control scheme between ULTC and SVC. The numerical simulation verifies that the proposed system could improve the voltage profile on the load bus and could decrease the number of ULTC tap operation.

  • PDF

A.C. current control scheme for R-L load (R-L 부하에 대한 교류전류 제어방식)

  • 박민호;최규하
    • 전기의세계
    • /
    • v.29 no.12
    • /
    • pp.791-797
    • /
    • 1980
  • This paper is concerned with the study of improving the faults of phase control scheme and suggesting a new approach to the control of load circuit with AC source. AC current control can restrict the magnitude of current within the given upper and lower current and make current continuous during every cycle. Also the harmonic contents of current can be greatly reduced using this control scheme. Analog computer and digital computer simulations reveal that the current control scheme is superior to the phase control scheme in controlling the power supply to the load R-L. Experimintal results demonstrate the feasibility and verify the operation of current controlled system.

  • PDF