• Title/Summary/Keyword: A Feature Analysis

Search Result 3,612, Processing Time 0.028 seconds

Study of Nonlinear Feature Extraction for Faults Diagnosis of Rotating Machinery (회전기계의 결함진단을 위한 비선형 특징 추출 방법의 연구)

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.127-130
    • /
    • 2005
  • There are many methods in feature extraction have been developed. Recently, principal components analysis (PCA) and independent components analysis (ICA) is introduced for doing feature extraction. PCA and ICA linearly transform the original input into new uncorrelated and independent features space respectively In this paper, the feasibility of using nonlinear feature extraction will be studied. This method will employ the PCA and ICA procedure and adopt the kernel trick to nonlinearly map the data into a feature space. The goal of this study is to seek effectively useful feature for faults classification.

  • PDF

A Study on Applying Feature-Oriented Analysis Model to Video-On Demand (VOD) Service Development (주문형 비디오 서비스 개발의 피처지향 분석모델 적용 연구)

  • KO, Kwangil
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.457-463
    • /
    • 2017
  • VOD service provides an additional revenue model for digital broadcasting companies in addition to the existing subscription fees and advertisement-based revenue models. Therefore, each digital broadcasting company develops its own VOD service and performs frequent improvement work. In this circumstance, the developer is seeking to improve the efficiency of the VOD service development. To address the needs of such developers, this study conducted a basic study to apply the feature-oriented analysis model to the development of VOD services. The feature-oriented analysis model is recognized (through a number of case studies) as an effective tool for analyzing the requirements of softwares with the functions that are interconnected organically. In this paper, we developed a feature model of VOD service and designed the primary functions of each feature and the test-cases that can test the these functions, laying the foundation for developing VOD services based on feature-oriented analysis model.

Image Feature Extraction Using Energy field Analysis (에너지장 해석을 통한 영상 특징량 추출 방법 개발)

  • 김면희;이태영;이상룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.404-406
    • /
    • 2002
  • In this paper, the method of image feature extraction is proposed. This method employ the energy field analysis, outlier removal algorithm and ring projection. Using this algorithm, we achieve rotation-translation-scale invariant feature extraction. The force field are exploited to automatically locate the extrema of a small number of potential energy wells and associated potential channels. The image feature is acquired from relationship of local extrema using the ring projection method.

  • PDF

Nonlinear Feature Transformation and Genetic Feature Selection: Improving System Security and Decreasing Computational Cost

  • Taghanaki, Saeid Asgari;Ansari, Mohammad Reza;Dehkordi, Behzad Zamani;Mousavi, Sayed Ali
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.847-857
    • /
    • 2012
  • Intrusion detection systems (IDSs) have an important effect on system defense and security. Recently, most IDS methods have used transformed features, selected features, or original features. Both feature transformation and feature selection have their advantages. Neighborhood component analysis feature transformation and genetic feature selection (NCAGAFS) is proposed in this research. NCAGAFS is based on soft computing and data mining and uses the advantages of both transformation and selection. This method transforms features via neighborhood component analysis and chooses the best features with a classifier based on a genetic feature selection method. This novel approach is verified using the KDD Cup99 dataset, demonstrating higher performances than other well-known methods under various classifiers have demonstrated.

FEROM: Feature Extraction and Refinement for Opinion Mining

  • Jeong, Ha-Na;Shin, Dong-Wook;Choi, Joong-Min
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.720-730
    • /
    • 2011
  • Opinion mining involves the analysis of customer opinions using product reviews and provides meaningful information including the polarity of the opinions. In opinion mining, feature extraction is important since the customers do not normally express their product opinions holistically but separately according to its individual features. However, previous research on feature-based opinion mining has not had good results due to drawbacks, such as selecting a feature considering only syntactical grammar information or treating features with similar meanings as different. To solve these problems, this paper proposes an enhanced feature extraction and refinement method called FEROM that effectively extracts correct features from review data by exploiting both grammatical properties and semantic characteristics of feature words and refines the features by recognizing and merging similar ones. A series of experiments performed on actual online review data demonstrated that FEROM is highly effective at extracting and refining features for analyzing customer review data and eventually contributes to accurate and functional opinion mining.

Comparative Analysis of the Performance of SIFT and SURF (SIFT 와 SURF 알고리즘의 성능적 비교 분석)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

Feature Selection Effect of Classification Tree Using Feature Importance : Case of Credit Card Customer Churn Prediction (특성중요도를 활용한 분류나무의 입력특성 선택효과 : 신용카드 고객이탈 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis, a model can be constructed with various machine learning algorithms, including decision tree. And feature importance has been utilized in selecting better input features that can improve performance of data analysis models for several application areas. In this paper, a method of utilizing feature importance calculated from the MDI method and its effects are investigated in the credit card customer churn prediction problem with classification trees. Compared with several random feature selections from case data, a set of input features selected from higher value of feature importance shows higher predictive power. It can be an efficient method for classifying and choosing input features necessary for improving prediction performance. The method organized in this paper can be an alternative to the selection of input features using feature importance in composing and using classification trees, including credit card customer churn prediction.

Designing VOD Service Domain Feature Model and VOD Service Developing Process Based-on it (VOD 서비스 도메인 피처모델과 이를 기반한 VOD 서비스 개발 프로세스)

  • KO, Kwangil
    • Convergence Security Journal
    • /
    • v.17 no.3
    • /
    • pp.51-57
    • /
    • 2017
  • VOD service provides an additional revenue for broadcasting companies in addition to the existing subscription fees and advertisement-based revenue. Therefore, each broadcasting company develops its own VOD service and performs frequent improvement work. This leads to the development of new VOD services, so developers are considering ways to effectively handle the frequent development needs. In this background, we conducted an underlying research to apply the feature-oriented analysis model to the development of VOD service. The feature-oriented analysis model used in this study is the Feature-Oriented Domain Analysis (FODA) developed by SEI of Carnegie Mellon University. FODA provides a tool for specifying a feature model of a software domain, based on which developers determine the configuration of a software with customers. This study developed a feature model of the VOD service domain and devised the functionalities and testcases in an integrated manner with the feature model. Additionally, we proposed a VOD service development process utilizing the feature model, function specification, and testcases.

A Comparison on Independent Component Analysis and Principal Component Analysis -for Classification Analysis-

  • Kim, Dae-Hak;Lee, Ki-Lak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.717-724
    • /
    • 2005
  • We often extract a new feature from the original features for the purpose of reducing the dimensions of feature space and better classification. In this paper, we show feature extraction method based on independent component analysis can be used for classification. Entropy and mutual information are used for the selection of ordered features. Performance of classification based on independent component analysis is compared with principal component analysis for three real data sets.

  • PDF

Slow Feature Analysis for Mitotic Event Recognition

  • Chu, Jinghui;Liang, Hailan;Tong, Zheng;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1670-1683
    • /
    • 2017
  • Mitotic event recognition is a crucial and challenging task in biomedical applications. In this paper, we introduce the slow feature analysis and propose a fully-automated mitotic event recognition method for cell populations imaged with time-lapse phase contrast microscopy. The method includes three steps. First, a candidate sequence extraction method is utilized to exclude most of the sequences not containing mitosis. Next, slow feature is learned from the candidate sequences using slow feature analysis. Finally, a hidden conditional random field (HCRF) model is applied for the classification of the sequences. We use a supervised SFA learning strategy to learn the slow feature function because the strategy brings image content and discriminative information together to get a better encoding. Besides, the HCRF model is more suitable to describe the temporal structure of image sequences than nonsequential SVM approaches. In our experiment, the proposed recognition method achieved 0.93 area under curve (AUC) and 91% accuracy on a very challenging phase contrast microscopy dataset named C2C12.