• Title/Summary/Keyword: A 5052 alloy sheet

검색결과 29건 처리시간 0.029초

알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구(제1부. 실험) (Finite Element Analysis and Experimental Investigation of Non-isothermal Forming Processes for Aluminum-Alloy Sheet Metals. (Part 1. Experiment))

  • 류호연;배원택;김종호;김성민;구본영;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.45-52
    • /
    • 1998
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5052-H32 for improving deep drawability. Experiments for procucing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shape. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5052-H32 sheet, whereas LDR of A1050-H16 is 2.25, could be obtained and the former was 8 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5052-H32 material was also about 2 times deeper than the depth drawn at room temperature. The effects of blank shape, and temperature on drawability of aluminum materials as well as thickness distribution of drawn cups were examined and discussed.

  • PDF

혼합모드 하중하의 A5052 합금판재에서의 피로시험에 관한 연구 (A Study on the Fatigue Test in A5052 Alloy Sheet Under Mixed Mode Loading)

  • 구재민
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.828-834
    • /
    • 2002
  • In this paper, for the mixed mode fatigue problem, the method of determining testing load was proposed. It is based on the plastic zone size and the limited maximum stress intensity factor by ASTM STANDARD E 647-00. The application method of maximum tangential stress criterion and the stress intensity factor for the finite width specimen was proposed. In the result of applying the method to mixed mode fat gut test for A5052 H34, it obtained the satisfactory experimental results on the stable crack growth.

셰이빙 정밀도 향상을 위한 예비전단 가공에서의 가공여유와 틈새의 영향 (Influence of shaving allowance and clearance in pre-shearing process for improving shaving accuracy)

  • 오솔길;조대일;강병두;김종호
    • Design & Manufacturing
    • /
    • 제2권3호
    • /
    • pp.40-44
    • /
    • 2008
  • Shaving in sheet metal forming is defined as a finish process to make the sheared surface clean which was blanked or pierced in the previous shearing stage. In this study the new shaving technique is applied to the progressive operation. The specimen is automatically fed by continuous movement of the strip. Which improve the positioning accuracy higher. For this study a square part which consist of blanking and piercing is selected for investigation and the progressive die which includes pre-piercing, pierce-shaving, half-blanking and blank-shaving etc is prepared for specimens of steel sheet(SPCC) and aluminum alloy sheet(AL5052). Experiments are carried out for several working variables such as shaving allowance, pre-shearing clearance and relative half-blanking depth. Consequently it was confirmed that the shaving by progressive die can be successfully employed to produce the clean parts requiring shaving process and optimum working conditions for shaving SPCC and AL5052 sheet metal are shaving allowance of 0.2mm(1.3% of thickness) and pre-shearing clearance of 5%.

  • PDF

A5052-H112 합금의 겹치기 마찰교반접합 건전성 (Joining Ability and Mechanical Properties of Friction Stir Lap Welded A5052-H112 Alloy)

  • 고영봉;최준웅;박경채
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.34-40
    • /
    • 2010
  • In Friction Stir Lap Welding(FSLW), the movement of material within the weld was more important than the microstructure, due to the interface present between the sheets. Thus, The soundness of free defect, Effective Sheet Thickness(EST) and width of joint were most important factor of mechanical properties. Specimens by lap joint types that were 'A-type' and 'R-type' were made in this study. A-type tensile specimen was loaded at advancing side and R-type tensile specimen was loaded at retreating side. Macro-, micro-structural observation and mechanical properties of FSLW A5052-H112 alloy ware investigated under varying rotating and welding speed. The results were as follows: Material hook formed decreasing after sharply increasing was appeared at the end interface of joint area in advanced side, and material hook formed decreasing after smoothly increasing was observed at that in retreated side. Tensile load had no relation with defects. As rotating speed was higher, tensile strength was increasing and EST was decreasing regardless of joint types. joint efficiency was over 70%. In a result of fractography, fracture in A-type was partially occurred by dimple in SZ, and fracture in R-type was generally occurred by dimple in HAZ.

이종 알루미늄의 ARB공정에 의한 초미세립 복합알루미늄합금판재의 제조 및 평가 (Fabrication and Estimation of an Ultrafine Grained Complex Aluminum Alloy Sheet by the ARB Process Using Dissimilar Aluminum Alloys)

  • 이성희;강창석
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.893-899
    • /
    • 2011
  • Fabrication of a complex aluminum alloy by the ARB process using dissimilar aluminum alloys has been carried out. Two-layer stack ARB was performed for up to six cycles at ambient temperature without a lubricant according to the conventional procedure. Dissimilar aluminum sheets of AA1050 and AA5052 with thickness of 1 mm were degreased and wire-brushed for the ARB process. The sheets were then stacked together and rolled to 50% reduction such that the thickness became 1 mm again. The sheet was then cut into two pieces of identical length and the same procedure was repeated for up to six cycles. A sound complex aluminum alloy sheet was successfully fabricated by the ARB process. The tensile strength increased as the number of ARB cycles was increased, reaching 298 MPa after 5 cycles, which is about 2.2 times that of the initial material. The average grain size was $24{\mu}m$ after 1 cycle, and became $1.8{\mu}m$ after 6 cycles.

Microstructure and Mechanical Properties of AA6061/AA5052/AA1050 Alloy Fabricated by Cold Roll-Bonding and Subsequently Annealed

  • Seong-Hee Lee;Sang-Hyeon Jo;Jae-Yeol Jeon
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.439-446
    • /
    • 2023
  • Changes in the microstructure and mechanical properties of as-roll-bonded AA6061/AA5052/AA1050 three-layered sheet with increasing annealing temperature were investigated in detail. The commercial AA6061, AA5052 and AA1050 sheets with 2 mm thickness were roll-bonded by multi-pass rolling at ambient temperature. The roll-bonded Al sheets were then annealed for 1 h at various temperatures from 200 to 400 ℃. The specimens annealed up to 250 ℃ showed a typical deformation structure where the grains are elongated in the rolling direction in all regions. However, after annealing at 300 ℃, while AA6061 and AA1050 regions still retained the deformation structure, but AA5052 region changed into complete recrystallization. For all the annealed materials, the fraction of high angle grain boundaries was lower than that of low angle grain boundaries. In addition, while the rolling texture of the {110}<112> and {123}<634> components strongly developed in the AA6061 and AA1050 regions, in the AA5052 region the recrystallization texture of the {100}<001> component developed. After annealing at 350 ℃ the recrystallization texture developed in all regions. The as-rolled material exhibited a relatively high tensile strength of 282 MPa and elongation of 18 %. However, the tensile strength decreased and the elongation increased gradually with the increase in annealing temperature. The changes in mechanical properties with increasing annealing temperature were compared with those of other three-layered Al sheets fabricated in previous studies.

하이브리드(CW Nd : YAG Laser + MIG) 용접을 이용한 A5052-H32 맞대기 용접부의 역학적 특성에 관한 연구 (Study on Weldability of A5052-H32 Sheet using Nd : YAG Laser-MIG Hybrid Welding)

  • 김준형;방한서;비죠이 엠.에스.;전근홍;유재선;방희선
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.92-96
    • /
    • 2010
  • Recently, the application of aluminum alloys has been increasing for lightweight and high quality transport vehicles. Therefore, the proposal has been made to apply high speed hybrid welding methods to the marine grade aluminum alloy (A5052) used for shipbuilding by combining a 3-KW CW Nd : YAG laser and the MIG welding process. In this study, the characteristics of the welding parameters were investigated for a hybrid butt joint. This paper also describes the determination of the heat distribution in a weldment and the welding residual stress using a finite element method. Mechanical experimentation was also used to ascertain the reliability of the weldment.

레이저용접에 의한 알루미늄 박판구조물의 용접변형 해석 (Analysis of Welding Distortion for Laser Welded Sheet Metal Structures of Aluminum Alloy)

  • 권기보;김재웅;김철희
    • Journal of Welding and Joining
    • /
    • 제27권3호
    • /
    • pp.44-51
    • /
    • 2009
  • In this study, welding distortion analysis is performed for various design of tube shape structures which are assembled with aluminum sheet metal. Aluminum 5052 plates of 1mm thickness are used to analyze. An efficient keyhole model, as a welding heat source, is used for the prediction of full penetration weld size and shape which is required for the thermal analysis. The thermal and mechanical material properties are considered as temperature dependent functions, due to the high temperature variations during the welding. The numerical model is calculated by using a commercial software and evaluated with the experiments. The calculation results could make a comparative study in the view of distortion for the various size and shape of structure.

중첩된 알루미늄 5052 합금판재의 전기저항가열 마찰교반점용접에 관한 연구 (Electric Resistance Heated Friction Stir Spot Welding of Overlapped Al5052 Alloy Sheets)

  • 김태현;장민수;진인태
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.256-263
    • /
    • 2015
  • Electric resistance spot welding has been used to join overlapped steel sheets in automotive bodies. Recently to reduce weight in automotive vehicles, non-ferrous metals are being used or considered in car bodies for hoods, trunk lids, doors parts, etc. Various welding processes such as laser welding, self-piercing rivet, friction stir welding are being used. In the current study, a new electric resistance heated friction stir spot welding is suggested for the spot welding of non-ferrous metals. The welding method can be characterized by three uses of heat -- electric resistance heating, friction stir heating and conduction heating of steel electrodes -- for the fusion joining at the interfacial zone between the two sheets. The welding process has variables such as welding current, diameter of the steel electrodes, revolutions per minute (rpm) of the friction stir pin, and the insert depth of the stir pin. In order to obtain the optimal welding variables, which provide the best welding strength, many experiments were conducted. From the experiments, it was found that the welding strength could be reached to the required production value by using an electrode diameter of 10mm, a current of 7.6kA, a stirring speed of 400rpm, and an insert depth of 0.8mm for the electric resistance heated friction stir spot welding of 5052 aluminum 1.5mm sheets.

혼합모드상태에서의 Al 5052-H32 셀프 피어싱 리벳 접합부의 피로강도 평가 (Fatigue Strength Evaluation of Self-Piercing Riveted Al 5052-H32 Joints under Mixed Mode Loading Conditions)

  • 곽진구;강세형;김호경
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.1-7
    • /
    • 2016
  • In this study, static and fatigue tests on the self-piercing riveted (SPR) joint were conducted using cross-shaped specimens with aluminum alloy (Al-5052) sheets. Mixed mode loading was achieved by changing the loading angles of 0, 45, and 90 degrees using a special fixture to evaluate the static and fatigue strengths of the SPR joints under mixed mode loading conditions. Simulations of the specimens at three loading angles were carried out using the finite element code ABAQUS. The fatigue specimens failed in an interfacial mode where a crack initiated at the upper sheet and propagated along the longitudinal direction and finally fractured Maximum principal stress, von-Mises effective stress failed to correlate the fatigue lifetimes at three loading angles. However, the equivalent stress intensity factor was found to be appropriate to correlate the fatigue lifetimes at three loading angles.