• Title/Summary/Keyword: A/C Compressor

Search Result 285, Processing Time 0.028 seconds

Performance Characteristics of the Electrical Air Conditioning System for the Zero Emission Passenger Vehicle (무공해 승용 자동차의 냉방을 위한 전동식 냉방시스템 성능에 관한 연구)

  • Lee, Moo-Yeon;Cho, Chung-Won;Lee, Ho-Seong;Won, Jong-Phil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5430-5437
    • /
    • 2011
  • The objective of this study is to investigate the cooling performances of the electrical air-conditioning system using electric driven scroll compressor for zero emission passenger vehicles. This air conditioner with air source was used R-134a as a refrigerant and installed in a real zero emission passenger vehicle for tests under various driving conditions. The cooling performance of the electrical air conditioner was affected by driving velocities and conditions of the tested vehicle. The condensing rate of the condenser during driving is better than that of the idle condition. The average cool down temperature in the cabin room decreased on average $5.2^{\circ}C$ with the increase of the outdoor temperature from $20.0^{\circ}C$ to $30.0^{\circ}C$. In addition, the cooling performances were sufficient for cooling loads of the tested passenger car under tested conditions.

Aerodynamic Performance Prediction of Multistage Axial-Flow Compressors with Its Applications (다단축류압축기의 공력성능 예측기법 개발 및 적용연구)

  • Chung, H.T.;Park, C.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.54-59
    • /
    • 1999
  • The purpose of the present study was to develop the numerical method for predicting the on-design and off-design performance of multistage axial-flow compressors. The aerodynamic properties in blade rows were analyzed by incorporating the streamline curvature method as a quasi 3D analysis with the imperical modeling of exit flow angle and loss coefficients. The present calculation procedure has been tested by applying to 5-stage compressors and good agreement with experiments has been found. The detail analysis of aerodynamic performances has been done on the compression part of the bench-scaled gas turbine engines. The predicted performance map at the variable speedline and flow rates could be used as a guide of the engine operation.

  • PDF

하이브리드 GAX 사이클 해석 : 성능향상 및 저온획득 응용

  • 강용태;조현철;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.923-929
    • /
    • 2001
  • The objectives of this paper are to develop an advanced GAX cycle named HGAX (Hybrid Generator Absorber heat eXchange) cycle, and to study the effect of key pa-rameters on the cycle performance and the evaporating temperature. Two different HGAX cycles are developed-Type A (Performance improvement) and Type B (Low temperature applications). A compressor is placed between the evaporator and the absorber, and the evaporator pressure and the absorber pressure are controlled according to its application purpose. It was found that the COP could be improved by 24% compared with the conventional GAX cycle and the evaporating temperature as low as -8$0^{\circ}C$ could be obtained from the HGAX cycle.

  • PDF

Analysis of the Irreversibilities of a Vapor Compression Type Refrigerator (증기 압축식 냉동기의 비가역성 분석)

  • Shin, K.Y.;Jung, P.S.;Kim, S.Y.;Lee, S.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.30-41
    • /
    • 1995
  • The present paper investigated irreversibilities and energy flow of a vapor compression refrigerator. The entropy generation and the available energy dissipation in components of the system were analyzed by using experimental data. It was shown that the dissipated available energy in the compressor including electric motor was much more than those in other components. The effects of the pressure drop and heat loss on irreversibilities in the condenser and the evaporator were small in comparison with heat transfer.

  • PDF

Thermodynamic Efficiency of Metal Hydride Heat Pump (금속수소화물을 이용한 히트펌프의 열역학적 효율)

  • Park, C.K.;Komazaki, Y.;Suda, S.
    • Journal of Hydrogen and New Energy
    • /
    • v.3 no.2
    • /
    • pp.1-7
    • /
    • 1992
  • New type of metal hydride heat pump (MHHP) combined with hydrogen compressor was constucted for cooling purpose. A model for calculating the coefficient of performance (COP) is presented for MHHP which consisted of two different stages (enforced and natural stage), and compared with the experimental results. A concept of adiabatic compression work is introduced in the model on the basis of Carnot reversible analysis and the dependence of COP on the various operational parameters is discussed.

  • PDF

A Study on Performance Degradation Analysis of Gas Turbine Combined Heat and Power Plant (가스터빈 열병합발전소 성능저하 분석에 관한 연구)

  • Kim, Hong Joo;Kim, Byeong Heon;Oh, Byeong Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.248-255
    • /
    • 2016
  • In this study, the degree of performance changes between the guaranteed performance and the performance after a certain operating start time is calculated by using the performance test of gas turbine CHP. The reason of the performance degradation will then be analysed. For some results of the CHP plant performance tests the comprehensive electric power output was 8,380 kW lower than the guaranteed performance, and the gas turbine's output was reduced to about 250 kW whenever ambient temperatures rose to $1^{\circ}C$. Also, causes of the performance degradation of gas turbines are ambient temperature rise, temperature aging and air compressor's efficiency drop.

Probability Distribution of Operation codes in Edgebreaker (Edgebreaker에서 Operation 코드들의 확률분포)

  • Cho Cheol-Hyung;Kang Chang-Wook;Kim Deok-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.4
    • /
    • pp.77-82
    • /
    • 2004
  • Being in an internet era, the rapid transmission of 3D mesh models is getting more important and efforts toward the compression of various aspects of mesh models have been provided. Even though a mesh model usually consists of coordinates of vertices and properties such as colors and normals, topology plays the most important part in the compression of other information in the models. Despite the extensive studies on Edgebreaker, the most frequently used and rigorously evaluated topology compressor, the probability distribution of its five op-codes, C, R, E, S, and L, has never been rigorously analyzed yet. In this paper, we present probability distribution of the op-codes which is useful for both the optimization of the compression performance and a priori estimation of compressed file size.

Study on the Vapor Pressure and Miseibility of R-744/Mineral and POE Oil Mixture (R-744/광유 및 POE 오일 혼합물의 증기압 및 상용성에 관한 연구)

  • Choi, H.S.;Kim, S.;Park, K.K.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1672-1677
    • /
    • 2003
  • Carbon dioxide($CO_2$, R-744) has become a very popular issue in application to refrigeration and air conditioning systems as a natural refrigerant. An experimental study has been carried out to investigate the vapor pressure and miscibility of refrigerant R-744 in the presence of lubricant oil. This is of particular interest in the selection of the lubricant oil for the compressor of a refrigeration system or an air conditioning system using the refrigerant R-744. This apparatus consists of the test section, measuring devices, the vacuum pump, the constant temperature bath and relevant connecting pipes made of stainless steel. Two lubricant oils, such as mineral oil(Naphthenic) and polyol ester(POE) oil, are considered in the present study. For this purpose, test runs were conducted with the oil concentration range from 5 to 50 wt%, and the temperature range from -10 to $10^{\circ}C$ with $2^{\circ}C$ intervals. The results are correlated with the vapor pressure. and showed with the miscibility as visualization for the individual text components.

  • PDF

ASSESSMENT OF GAS COOLED FAST REACTOR WITH INDIRECT SUPERCRITICAL $CO_2$ CYCLE

  • Hejzlar, P.;Dostal, V.;Driscoll, M.J.;Dumaz, P.;Poullennec, G.;Alpy, N.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.109-118
    • /
    • 2006
  • Various indirect power cycle options for a helium cooled gas cooled fast reactor (GFR) with particular focus on a supercritical $CO_2(SCO_2)$ indirect cycle are investigated as an alternative to a helium cooled direct cycle GFR. The balance of plant (BOP) options include helium-nitrogen Brayton cycle, supercritical water Rankine cycle, and $SCO_2$ recompression Brayton power cycle in three versions: (1) basic design with turbine inlet temperature of $550^{\circ}C$, (2) advanced design with turbine inlet temperature of $650^{\circ}C$ and (3) advanced design with the same turbine inlet temperature and reduced compressor inlet temperature. The indirect $SCO_2$ recompression cycle is found attractive since in addition to easier BOP maintenance it allows significant reduction of core outlet temperature, making design of the primary system easier while achieving very attractive efficiencies comparable to or slightly lower than, the efficiency of the reference GFR direct cycle design. In addition, the indirect cycle arrangement allows significant reduction of the GFR &proximate-containment& and the BOP for the $SCO_2$ cycle is very compact. Both these factors will lead to reduced capital cost.

A study on the development of MVR desalination plant and its performance analysis (MVR해수담수화플랜트의 개발 및 성능에 관한 연구)

  • Kim, Yeongmin;Chun, Wongee;Kim, Dongkook
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • MVR evaporation is a method of pressurizing the evaporating steam to raise its temperature with an electric compressor instead of burning fuel and reusing the heat source through the embraced heat exchanger to minimize energy use. MVR desalination system with wind power uses varying wind power instead of stable electricity and can flexibly control the volume of fresh water production. The present study introduces the design, construction and operation of a MVR desalination system of 30ton/day capacity. Experimental results, MVR compression ratio is higher than 1.5, temperature difference of the main heat exchanger is $5{\sim}7^{\circ}C$. This value shows the same performance as the designed value.